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Abstract—We consider the problem of predicting the cuisine of
a recipe given a list of ingredients. Such classification can help
food databases and recipe recommender systems autonomously
categorize new recipes based on their ingredients. Results of our
evaluations show that a classification accuracy at least 77.87% is
possible on a data set of 39,774 recipes, surpassing the accuracy
of a baseline predictor that, for each recipe, trivially guesses the
most common cuisine.
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I. INTRODUCTION

Recipe search and recommendation websites such as
Yummly are growing in popularity [1]. When users contribute
new recipes to these websites, they are faced with a large
number of fields that require manual input of ingredient
lists, cooking steps, cuisine types, and descriptions, among
other data. The presence of a large number of input fields is
problematic, as an increase in form inputs has been shown to
heighten the probability that a user, out of frustration, abandons
a form entirely [2].

In this context, we present a machine learning strategy to
automatically categorize recipes by cuisine. Automatic classi-
fication has three benefits.

First, machine-driven classification reduces required user
input, thus potentially decreasing form abandonment rates.

Second, it is also useful in developing a notion of cuisine
similarity, allowing restaurant recommendation systems such
as Yelp to compare user cuisine preferences with restaurant
meal offerings, thus potentially leading to more relevant sug-
gestions.

Finally, automatic cuisine labeling can also help users dis-
cover what cuisines their custom, un-categorized recipes are
likely to belong to, allowing them to label their recipes with
less cognitive effort 1.

II. DATA AND EXPLORATORY ANALYSIS

The dataset, made available by recipe index Yummly [4]
through data science competition host Kaggle [5], consists of
39,774 recipes. Each recipe comprises a list of ingredients, a
unique identifier, and a cuisine label.

1simply choosing a likely match from a set of suggested labels remains
easier than recalling from scratch [3]

A. Basic Statistics

The distribution of recipes is as follows:
Cuisine Number of recipes
Brazilian 467
Russian 489

Jamaican 526
Irish 667

Filipino 755
British 804

Moroccan 821
Vietnamese 825

Korean 830
Spanish 989
Greek 1175

Japanese 1423
Thai 1539

Cajun Creole 1546
French 2646
Chinese 2673
Indian 3003

Southern US 4320
Mexican 6438
Italian 7838

Italian is the most popular cuisine, with 7,838 recipes. 6,703
distinct ingredients exist, though this number may over-count
ingredients that are categorically similar, for example monterey

jack cheese and swiss cheese.

B. Frequency of ingredients and outliers

Among the set of 25 least common ingredients, the
following ingredients each only occur in one recipe.
Optimizing a predictor to look for these least common
ingredients may over-fit training data.

Minute white rice, bottled low sodium salsa, clam sauce,

kraft mexican style shredded four cheese with a touch

of philadelphia, mahlab, broccoli romanesco, flaked oats,

country crock honey spread, saffron road vegetable broth,

black grapes, orange soda, ginseng tea, adobo all purpose

seasoning, chinese buns, custard dessert mix, gluten-free

broth, burger style crumbles, egg roll skins, cooked vegetables,

schnapps, mild sausage, vegetarian protein crumbles, white

creme de cacao, gluten flour, dried neem leaves.

The most popular ingredients that are present across many
dishes, which we suspect may have lower predictive power in
distinguishing cuisines, are as follows:
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Ingredient Occurrences in recipes
salt 18049

onions 7972
olive oil 7972

water 7457
garlic 7380
sugar 6434

garlic cloves 6237
butter 4848

ground black pepper 4785
all-purpose flour 4632

pepper 4438
vegetable oil 4385

eggs 3388
soy sauce 3296
kosher salt 3113

green onions 3078
tomatoes 3058

large eggs 2948
carrots 2814

unsalted butter 2782
ground cumin 2747

extra-virgin olive oil 2747
black pepper 2627

milk 2263
chili powder 2036

C. Noise in ingredient strings

Further analysis revealed the presence of noise in ingre-
dient names, which may lead to inaccurate predictions. For
example, certain ingredient strings encode adjectives and unit
information, while others are polluted with unicode escape
sequences and punctuation. Finally, the presence of undesirable
ingredient descriptors adjectives such as ”big” may reduce
classification accuracy too, because two ingredient strings
that describe the same ingredient may be treated as distinct.
For example, ”medium eggs” and ”large eggs” are distinct
ingredients, though discerning between the size of eggs may
not provide differentiating information about a recipe’s cuisine
and thus merely represent noise.

Further examples of ingredients that may need pre-
processing and normalization are:

• (15 oz.) refried beans
• 33% less sodium smoked fully cooked ham
• 2 1/2 to 3 lb. chicken, cut into serving pieces
• kraft mexican style 2% milk finely shredded four cheese

D. Additional features

The training data was lean, only containing a list of ingre-
dients per recipe, so we explored encoding additional features.

We observed that certain ingredient names directly encode
valuable hints about the cuisine, for example, ”jamaican jerk
rub” is likely to be included in jamaican recipes, and ”crme
fraiche” is likely to be included french cuisines.

We also hypothesized that the number of ingredients per
recipe may be a useful indicator of which cuisine a recipe
belongs to and thus be a useful feature. For example, certain
cuisines may be defined by very simple recipes with few in-
gredients while others may be defined by complex recipes with
many ingredients. However, plotting the number of ingredients
per recipe proved otherwise; the distribution of ingredients per
recipe was too homogeneous distribution and encountered high
variance, making it a noisy and thus weak feature.

Cuisine Median
number of
ingredients
per recipe

Standard de-
viation

irish 9.00 3.70
mexican 10.00 4.66
chinese 12.00 4.04
filipino 10.00 3.85

vietnamese 12.00 5.25
moroccan 13.00 4.80
brazilian 9.00 5.55
japanese 9.00 4.24
british 9.00 4.16
greek 10.00 3.73
indian 12.00 5.02

jamaican 12.00 4.76
french 9.00 4.14
spanish 10.00 4.16
russian 10.00 4.05

cajun creole 12.00 4.61
thai 12.00 4.41

southern us 9.00 3.87
korean 11.00 3.88
italian 10.00 3.81

III. PREDICTIVE TASK

A. Task and error measure

Given a list of ingredients belonging to a recipe, our model
should predict its cuisine. We use the classification error to
evaluate our model.

B. Training set and validation set

Data is divided into a training set containing 80 percent
of samples and a validation set containing the remaining 20
percent of samples. The training set will be used to train
predictive models, while the validation set shall be used to
to assess how well our machine learning strategies generalize
to unseen data, and to reduce our risk of over-fitting our model
to training data.

C. Baseline model

The baseline model, provided by Kaggle [5], simply predicts
the most popular cuisine for any given recipe. In this data
set, the most popular cuisine was Italian. This trivial predictor
achieved a training set error rate of 80.15% and validation
set error rate of 80.85%, slightly more accurate than simply

Long
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randomly guessing a recipe’s cuisine, which resulted in a
training and validation set error rate of 95.00%.

D. Features

1) Custom tf-idf scoring: For our model that implemented
tf-idf scoring, we did not generate a typical feature vector to
train a machine learning algorithm. Instead, we aimed to find
the ingredients that were unique to each cuisine by calculating
the tf-idf score for each ingredient in a recipe with respect to
each cuisine, and finally predicting the cuisine with the highest
total score. The calculations are described in detail below.

2) Logistic and random forest regression: The feature repre-
sentation that was the most useful for our task was a ”bag-of-
ingredients”. To produce the feature vector for logistic and
random forest regression, we generated a sparse vector of
occurrence counts of each ingredient name in a given recipe,
conceptually similar to the ”bag-of-words” feature model.

After considering additional features as described in the
exploratory analysis, we deemed those would provide only
minor accuracy gains and thus did not calculate and encode
them.

E. Feature pre-processing

As mentioned in the exploratory analysis, it was evident that
pre-processing ingredient strings could lead to better predictive
outcomes, especially in a ”bag-of-ingredients” model.

Each ingredient string in the training set was pre-processed
as follows:

1) Convert all letters into lowercase text.
2) Strip escaped unicode, e.g. \u2012.
3) Strip punctuation such as semicolons and commas.
4) Strip parentheses and the strings they enclose, e.g. (16

oz.)

5) Strip food descriptors such as ”hot” or ”unsweetened”,
drawing from a pre-defined list [6].

6) Strip excess whitespace, including preceding and trail-
ing space characters.

As the pre-processing procedure utilized several regular
expressions and was thus computationally expensive, we
implemented a caching mechanism that only re-processed
data if the training set changed or pre-processing procedure
was modified, significantly reducing average pre-processing
time and allowing for more frequent model testing and
analysis.

IV. APPROACH AND MACHINE LEARNING MODEL

A. Custom tf-idf scoring model

1) Model construction: Our goal was to design a scoring
model that indicates what cuisine an ingredient most-likely
belongs to, and given scores for each ingredient against each
cuisine, could predict the cuisine of a recipe.

We thought we could use term-frequency inverse-document-
frequency (tf-idf), which involves calculating the relative fre-
quency of a ingredient in a particular cuisine compared to all

other cuisines. Doing so would reveal the ”indicative” ingre-
dients that could be used to, with relatively high confidence,
predict the cuisine of a recipe. For example, the ingredient
garam masala is an ”indicative” ingredient i that is often
associated with cuisine c; a higher tf-idf for i for a cuisine
c score means that i occurs more frequently in cuisine c than
in any other cuisines.

On the other hand, the ingredient water is common across
many cuisines, and thus not a good ”indicative” ingredient.

For each ingredient in the training set, we calculated its tf-
idf score with respect to cuisine type as follows:

tf(i, c) = number of times ingredient i appears in cuisine c

idf(i, C) =
number of cuisines in C

number of cuisines that contain ingredient i

tfidf(i, c, C) = tf(i, c) ⇤ idf(i, C)

2) Scoring example: Applying the scoring mechanism to
the aforementioned examples garam masala and water, the
tf-idf score calculated for garam masala with respect to
Indian cuisine is 3584.9572, and for contrast, the tf-idf score
calculated for garam masala with respect to Italian cuisine
is 4.1588. The score reveals that, as expected, garam masala

occurs significantly more frequently in Indian cuisine.
To contrast, water has a tf-idf score of 0.00 with respect to

all cuisines, because it occurs in all cuisines.

3) Prediction mechanism: In order to make a prediction
given only a list of ingredients for a recipe, the model
calculates the tf-idf scores for each ingredient with respect
to each cuisine and summed the scores by cuisine. Then, the
model predicts whichever cuisine has the highest score.

score(R,C) = max(
X

i2R

tfidf(i, c, C)8c 2 C)

4) Prediction example: Suppose the set of cuisines were A,
B, and C, and the model was given a recipe with ingredients
X , Y , and Z.The tf-idf scores for each ingredient-cuisine pair
are then calculated as follows:

A B C
X 311 260 0
Y 0 58 0
Z 0 12 15

Total 311 330 15

In the last row, it is evident that cuisine B has the highest
total score for the three ingredients, so the model predicts
B. We counted the number of times each ingredient occurred
in each cuisine in the training set and used those number to
calculate tf-idf scores on both the training and validation sets.
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5) Performance: This tf-idf scoring model had a 34.25%
error rate on the training set and 33.73% error rate on the
validation set, which was significantly lower than the baseline
predictor.

While the model performed well, it is still considerably
naive, as it simply sums the tf-idf scores per cuisine and
predicts the cuisine with the highest score. This is problematic
when two cuisines have similar scores because the model has
no consistent method for resolving such a close tie.

In the example above, the difference between the scores of
cuisine A and B is relatively small, implying that a recipe,
according to the tf-idf model, could belong to cuisine A with
almost equal likelihood.

Conversely, considering the scores for ingredients X and
Y , it is evident that cuisine B is a more favorable candidate
than cuisine A. Although ingredient X favors cuisine A, the
difference between 311 and 260 is not as stark as the difference
between 0 and 58 for ingredient Y. Our naive summation
approach does not take the relative strength of differences in
scores into consideration.

B. Random Forest and Logistic Regression

The shortcomings of the custom tf-idf scoring model moti-
vated our attempt at applying machine learning to the predic-
tive task, namely random forest and logistic regression.

1) Model construction: As mentioned earlier, to train the
regression models, we generated a ”bag-of-ingredients” feature
representation for each recipe - a sparse vector of occurrence
counts of each ingredient name in a given recipe. We generated
a ”bag-of-ingredients” rather than a ”bag-of-words” feature
vector because many ingredients contain multiple words that
require semantic grouping.

For example, in a ”bag-of-words” vector, the ingredient
green onions would be split into separate categorical features
green and onions, thus discarding semantic information; the
disjoint words onions or green independently do not encode
the same meaning as the ingredient green onions.

Finally, we also tested logistic regression on feature vectors
that transformed the original vector of ingredient occurrence
counts into ones that used normalized tf-idf scores (with sub-
linear tf-scaling).

2) Performance: The performance of the below models is
as follows:

Model Training
Error
Rate

Validation
Error
Rate

Baseline (predict Italian) 0.8015 0.8085
Random Forest Regressor 0.0077 0.3089

Logistic Regressor, no tf-idf 0.1361 0.2104
Logistic Regressor, with tf-idf 0.1844 0.2227

Although random forest regression outperforms logistic
regression on the training set, it over-fits the training data
and performs worse than the logistic regressor (no tf-idf)
on unseen validation set data. Logistic regression, a simpler
model, appears less susceptible to over-fitting.

3) Discussion of logistic regressor and tf-idf: Surprisingly,
using normalized tf-idf scores rather than simple occurrence
counts in the feature vector performed did not reduce the error
rate on both training and validation sets. In fact, it worsened it.
Later analysis revealed that using normalized tf-idf scores that
range from 0.0 to 1.0 rather than using ingredient occurrence
counts (no tf-idf) performed worse for the following reason:

Consider the exemplary ingredient soy sauce. The number
of times soy sauce appears in each cuisine in the training data
is as follows:

Cuisine occurrences
of soy sauce

irish 42
mexican 306
chinese 11538
filipino 1650

vietnamese 1194
moroccan 24
brazilian 18
japanese 4098
british 18
greek 36
indian 138

jamaican 456
french 36
spanish 18
russian 18

cajun creole 78
thai 2604

southern us 162
korean 3018
italian 120

As expected, soy sauce is more prevalent in Asian recipes
than others. However, since soy sauce appears at least once
in all of the cuisines, the tf-idf score for soy sauce for each
ingredient is 0.0. In other words, the tf-idf score suggests
that knowing a recipe contains soy sauce would not provide
discerning information about its cuisine, which is obviously
false. Thus, this example illustrates why a simpler bag-of-
ingredients model performed better without tf-idf scoring.

4) Logistic regressor hyperparameter tuning: After deduc-
ing that logistic regression with bag-of-ingredients was the best
performing model out of the ones tested, we fine-tuned the
regularization parameter C2 and obtained the following results:

C Training
Error Rate

Validation
Error Rate

0.01 0.3392 0.3551
0.1 0.2230 0.2492
0.5 0.1603 0.2158
1.0 0.1361 0.2104
2.0 0.1156 0.2103

10.0 0.0807 0.2188
100.0 0.0641 0.2437

2
C: the inverse of regularization strength where smaller values specify

stronger regularization.

Long
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Conclusively, the logistic regressor with a regularization
parameter of C = 2.0 was the best performing model for our
predictive task.

V. LITERATURE

We used a data set provided by a Kaggle competition [5]
What’s Cooking, which sourced its data from Yummly [4].
While building our models, we did not reference existing
literature that focused on the similar problem domain, though
upon completing the project, we discovered various approaches
used in other submissions to the Kaggle competition.

Some approaches involved training decision-tree models
with a bag-of-words feature representation [?], often without
pre-processing ingredient strings. Another notable approach
trained a neural network with 2 hidden layers and one embed-
ding layer with dropout regularization and a NAG optimizer
[7], resulting in an low error rate of 0.2092 on the Kaggle
leaderboard’s test set.

Notably, in the domain of applying machine learning to
recipes, IBM built a software system that can generate ”cre-
ative recipes” [8].

VI. RESULTS AND CONCLUSION

A. Expected real-world test-set performance

Model Training
Error
Rate

Validation
Error
Rate

Test
Error
Rate

Baseline (predict Ital-
ian)

0.8015 0.8085 N/A

Custom tf-idf scoring 0.3425 0.3373 N/A
Random Forest Re-
gressor

0.0077 0.3089 N/A

Logistic Regressor,
with tf-idf

0.1844 0.2227 N/A

Logistic Regressor, no
tf-idf

0.1361 0.2104 N/A

Logistic Regressor
(C=2.0), no tf-idf

0.1157 0.2103 0.2213

Our logistic regression model (C = 2.0, no tf-idf) with
ingredient name pre-processing and bag-of-ingredient counts
as described above resulted in a test set error of 0.2213 on
Kaggle, which does not deviate significantly from the above
reported validations et error. Overall, our model performs
drastically better than provided baseline model and even the
tf-idf scoring models that we initially used.

B. Final feature representation

Our final feature representation used distinct ingredient
occurrence counts with pre-processed ingredient names,
as described earlier. This classifier may appear to work
exceptionally well due to the the distribution of the data set:
it is most effective at classifying recipes that also happen
to belong to the most popular cuisines, namely Italian and
Mexican.

C. Confusion matrix discussion

The confusion matrix, attached in the appendix, visualizes
the results of the logistic regressor, giving deeper insight into
its performance as well as (dis-)similarity between cuisines.

Evidently, the most difficult cuisine to classify is Russian;
the easiest cuisine to classify is Mexican.

Furthermore, the similarity between cuisines can be inferred
from the confusion matrix. For instance, according to the
model, French food is the most similar to Italian food in terms
of ingredients. Not surprisingly, Japanese food is reportedly
similar to Chinese food, confirming our intuition as they both
belong to the class of Asian cuisines.

VII. FURTHER WORK

A. Investigating mis-classification

The confusion matrix raises interesting results that identify
weak-points in our model, such as the high rate of mis-
classification of Russian recipes.

It may be worth investigating why certain cuisines are intrin-
sically more difficult to accurately classify. Perhaps Russian
recipes are challenging because they are simplistic; perhaps
they comprise only common ingredients, and there are few
ingredients that are unique to the Russian cuisine?

The confusion matrix further reveals that certain cuisines are
often misclassified as another, thus the model considers such
cuisine pairs very ”similar”.

One question that arises from this observation is whether
very ”similar” cuisine pairs have relatively more common
ingredients than cuisine pairs that are considered ”dis-similar”.
Our isolated analysis of instances of mis-classification con-
firmed that Asian cuisines were often misclassified as other
Asian cuisines because the cuisines share many common
ingredients.

B. Ingredient independence assumption

In addition, our initial models that leveraged custom tf-idf
scoring of each ingredient were premised on the assumption
that each ingredient should be treated independently. But does
this assumption hold true?

Intuitively, this does not actually seem to be a valid assump-
tion, as we can anecdotally observe dependence, or coupling,
between two or more ingredients.

For instance, the method of tf-idf scoring that we developed
could statistically deem sesame oil as a strong indicator of
Chinese cuisine. However, it is plausible that sesame oil

coupled with bok choy may be an even stronger indicator
of Chinese cuisine, while sesame oil coupled with wasabe in
the same recipe otherwise suggests it belongs to the Japanese
cuisine.

It may be worth capturing this notion of dependency and
encoding it the tf-idf calculations to improve accuracy.
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C. More sophisticated ingredient string pre-processing

Finally, it may be worth experimenting with further ingre-
dient string pre-processing. Though we did simple transfor-
mation, lemmatization and stemming of words may lead to
further gains in classification accuracy. For example ”Brown
eggs from a Free-Range Chicken” is currently transformed
to ”eggs from a chicken”, though it would likely be worth
developing an algorithm to reduce it to the string ”egg”.
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APPENDIX

The confusion matrix where Cij represents the percentage
that the classifier classified the recipe as cuisine i but given
that recipe was labeled cuisine j


