
Music Recommendations based on Implicit Feedback and Social
Circles: The Last FM Data Set

Abhishek Majumdar1, Aravind Kumar K1 and Sriram Manohar1

Abstract— The goal of recommender systems is to make
personalized product recommendations based on users taste. In
this paper we perform an exploratory analysis on the LastFM
data set. Based on the data set properties we use collaborative
filtering , latent factor models and propose community detection
using clique percolation to give personalized artist recommen-
dations to the user. We circumvent the implicit network feature
and give reasonable recommendations to the user.

I. INTRODUCTION

One of the most exciting results of music consumption
transferring into the digital online marketplace is the ex-
plosion of user data that is generated as a result. Thanks
to access to user’s social circles, tagging behaviour and
viewing history through the LastFM API- a number of music
recommender system algorithms have been developed using
the LastFM dataset.The data publicly available through this
free API serves as the inspiration for this project.

In this project we study the network properties of the
graph generated from the LastFM Dataset and try to come
up with personalised artist recommendations for users. After
an initial exploratorty analysis of the data set we observe that
the network is a highly dense connection of users with list of
artists, friends and tags as features. We apply and evaluate
techniques such as Neighbourhood Modelling, Community
Detection and Latent Factor Models on this data set and
compare them with relevant baselines.

II. DATASET AND GOALS

A. Collection

The freely available and wide range of last fm APIs5 were
used to collect data, starting with a single user as the seed
and going up to 5 layers deep. The first important idea
was to study the network of friends in order to observe
the similarity in listening behaviour among friends. The
second important information needed from the dataset was
the implicit behaviour of users, which included their tagging
activity and top playcounts for each artist. The last.fm
APIs artist.getTags, User.getTopArtists, user.getNeighbours
and User.getFriends were used to collect the dataset.

B. Basic Statistics

Table 1 demonstrated the basic statistics of the dataset that
was collected.

*This work was not supported by any organization
1Department of Computer Science and Engineering, University

of California- San Diego abmajumd,akumark,srmanoha at
ucsd.edu

TABLE I
DEFINING THE DATASET

Number of users 1689
Number of artists 12110

Number of unique tags 8984
Number of user, artist, tag tuples 170249

Number of bi-directional friendships 12527
Number of user, artist, playcount tuples 82911

C. Preliminary Data Analysis

To further understand the properties of our dataset, the
various relationships such as user-user, user-tags, user-artist,
artist-tags were analyzed.

The friendship network with 12527 bidirectional relation-
ships(14.833 friends per user on an average) is dense as can
be seen from Figure 1. In order to analyze the overlapping
community structure in this network, clique percolation
technique was used. A community is the maximal union of k-
cliques that can be reached from each other through a series
of adjacent k-cliques. We observed that the maximum value
of k was 12 before we ended up with zero communities.
This opens up the possibility of studying the musical tastes
within a close knit community of friends.

Fig. 1. The dense friendship network in the dataset

The frequency of tags that have repeated atleast twice is

plotted in sorted order in figure 2. It was observed that the
tags have a longtail distribution which was expected. There
were a few tags which repeated a lot of times in the dataset
namely (’rock’, 6697), (’pop’, 5143), (’alternative’, 4750),
(’electronic’, 4380). Also, some interesting properties that we
found were that alternate rock occurs with rock 74 percent
of the time, indie rock occurs with rock 72 percent of the
time, rap occurs with hip-hop almost 95 percent of the time.
Such simple overlaps show which tags are least informative.
Essentially, this opens up the possibility of clustering tags
while building tag based recommender systems.

Fig. 2. Frequency of tags vs the Tags repeated at least once
Mean=40.5063694268

Median = 5.0
Mode = 2

Plotting the sum of normalized playcount of each artist
which is the sum of each user’s playcount for a particular
artist divided by his total playcount as shown in Figure 3,
gives a more unbiased idea of who the popular artists are.
It turns out that Britney Spears, Lady Gaga and The Beatles
are at the top of this study.

Fig. 3. Normalized frequency per user vs Artists
Mean=13.4590163934

Median = 8.0
Mode = 5

D. Data Pruning

To remove the effect of the longtail of tags and artists,
the tags that repeated less than 6 times were removed and
every artist who received tags less than 2 were removed. This
reduced the number of user-artist-playcount tuples to 60134
from 82911 and the number of user-artist-tag tuples to 71686
from 170249

E. Goals

From the basic analysis of the dataset, the goal was to
develop models that would exploit:
• The implicit feedback from the users which is given by

the playcount for each artist,
• The rich collection of tags given the user-artist-tags

relationship.
• The dense network of friendship relationships between

users.
This motivated our literature survey and the 3 models that

were designed as described in the following sections

III. LITERATURE SURVEY

For implicit feedback datasets such as the last.fm dataset
which does not have ratings etc., a number of algorithms
have been used that suit this specific requirement. The
literature surveyed included collaborative filtering algorithms
proposed and implemented on the lastfm and movielens
datasets. CF was found to be the most popular technique
that was used to filter information. In memory-based CF
the similarity between two users or items are calculated
based on Pearson Correlation Coefficient similarity, cosine
similarity and Jaccard similarity. Then, according to the
nearest neighbors opinions the most interesting items for the
target user are recommended. Tso-sutter’s work focussed on
tag based recommendation2 while there were future works4

that fused tag based models with social network analysis.
Our interest in understanding the effect of social network in
predictive analysis motivated us to pursue a model based on
4.

There were very few papers that used the playcount
information to build a model. Pacula’s model1 converted the
playcount information into a rating scale and was based on
matrix factorization algorithms. To sum up, in this project,
we would like to explore the models presented in1,4 and their
performance on our dataset.

Also, we have implemented a clique percolation based
model to see the effect of social networks on recommender
systems and study their performance.

IV. LATENT FACTOR MODELS

The key idea behind latent factor models is to project the
users and items into a smaller dimensional space (such lower
dimensional projections are called factors), thereby clustering
similar users and items. Subsequently, the interest (similarity)
of a user to an unrated item is measured and the most similar
item(s) is(are) recommended to the user.

One of the most efficient ways to build such systems is
based on Matrix Factorization. Matrix factorization is usually
used in high-quality explicit feedback datasets, where users
make their preferences known by directly rating subsets of
available items on a fixed scale.

However , in the LastFM dataset there is no option for
the user to rate artists or playlists. We hence use an implicit
feedback mechanism to generate ratings for a given user-
artist combination. For each user we know the number of

times the user played songs by a given artist, but we do
not have direct ratings for that artist. As a result, in order
to use the matrix factorization approaches described earlier,
ratings must be estimated from play count information. We
define play frequency freq for a given user i and artist j to
be the users play count for that artist normalized by users
total plays:

freqi,j =
count(i, j)∑
j′ count(i, j

′)
(1)

We also adopt the notation freqk′(i) to denote the fre-
quency of the k-th most listened to artist for user i. As
Figure 3 shows, play frequencies have a clear power law
distribution. A rating for an artist with rank k is computed
as a linear function of the frequency percentile.

ri, j = 4.(1−
k−1∑
k′=1

freqk′(i)) (2)

A. Baseline

1) Baseline 1: We use the α model as the first baseline.
This model computes the gloabal average of the ratings
which was reported to be 2.97189617732. This gave a mean-
squared error of 0.74330392221 on the test set.

2) Baseline 2: We use the βu and βi model as the second
baseline. This algorithm is described in [3]. The parameters
βu and βi are estimated using a decoupling method, which
requires less complexity but are less accurate. We choose λ
as 3.25 which is a parameter applied to estimate βu and βi
respectively.

Table 2 shows the results of the baseline models.

TABLE II
BASELINE MODEL

Name of the Model Train Error Test Error
α - 0.74330392221

βu βi with λ = 3.0 0.55443212919 0.67668413290
βu βi with λ = 5.0 0.59846212789 0.69331476312

This shows that by choosing proper parameters of λ we
can improve test errors. Our experiments showed that the
best value of λ was between 1 and 5. We have however
shown results for λ = 3.0 and 5.0 as they give as reasonable
parameters to which we can compare our model.

The predicted rating is

ratingu,i = α+ βu + βi (3)

B. MATRIX FACTORISATION ALGORITHM

1) Theory: The Matrix factorization algorithm we use
is inspired by Singular Value Decomposition of the user-
product rating matrix Mi,j defined as

Mi,j = ri,j (4)

where ri,j is the observed rating of product j by user i
(Koren et al., 2009). The matrix M is usually sparse, with the

Netflix Challenge matrix having less than 2% of all possible
ratings available combinations(Funk, 2006). For m users and
n products, a typical model decomposes M into two matrices
U and P of dimensions f m and f n, respectively, such that
M is approximated by the product U and transpose of P.

ri,j = uTi pj (5)

Parameter estimation is accomplished by minimizing the
regularized square error between observed and estimated
ratings

minU,P

∑
ri,j

(ri,j − uTi pj)2 + λ(||u2i ||+ ||p2j ||) (6)

Stochastic gradient descent can be used to estimate the
parameters.The error term ei,j is defined as below:-

ei,j = ri,j − uTi pj (7)

The algorithm then uses this error to modify its parameters
by a magnitude proportional to γ using gradient descent.

ui ← ui + γ.(ei,j .pj − λ.ui) (8)

pj ← pj + γ.(ei,j .ui − λ.pj) (9)

Thus through minimizing equation 6 and updating equa-
tions 7 and 8 for finding the optimal values of the User and
Artist Matrix we can get the optimum user and artist features.

2) Implicit Problem and the Algorithm used: One of the
most significant differences between explicit and implicit
feedback data sets is the distribution of ratings. In an explicit
setting, the average user only rates a reasonably small subset
of products, and the ratings are not heavily skewed towards
one end or the other. Our data set was skewed towards the
right as shown in the figure 4.

Fig. 4. Rating Distribution of the Data Set - No of User-Items versus
rating

This demonstrates that ratings can be uncertain. We also
see here that most of the users translate to a score between
3 and 4. To model this uncertainty, confidence coefficients
is introduced.[6]

The confidence score is a linear function of the rating and
is of the form:-

ci,j = 1 + α.ri,j (10)

where α is determined through cross-validation. The equa-
tions hence become:-

ui ← ui + γ.(ci,j .ei,j .pj − λ.ui) (11)

pj ← pj + γ.(ci,j .ei,j .ui − λ.pj) (12)

We now use the stochastic gradient descent algorithm to
do parameter estimation.

3) Results: As we see in figure 5 we could not arrive
at the elbow point for testing after 280 iterations. The
training error at the end of 280 iterations with 32 fea-
tures was 0.37441886112441169 while the test error was
0.57069697841812323. We stopped at 280 iterations because
the difference in train error between subsequent iterations
was small.

Fig. 5. Training and Test Error versus number of Iterations

Figure 6 is a plot between number of features and error.

Fig. 6. Error versus number of features

Adding more features gave us better RMSE values.
We had experimented this model with 4 , 8 ,16 and 32
features respectively. The test error after 280 iterations
for 4 features was 0.6416538452231 and that reduced to
0.57069697841812323 with 32 features. Hence we conclude
more the features better is the model. Due to the fact that
the model is computationally expensive we could not try it
on larger number of features. The γ value chosen is 0.0012,
and λ value is 0.8. This is chosen randomly based on trial
and error.

V. TAG BASED CF INTEGRATING SOCIAL
NETWORK INFORMATION

In this method, we use a new metric proposed in 4

which combines the implicit and explicit relationships among
users viz., the tagging behavior and the friendship formed

respectively. The objective is to improve the accuracy of
recommendation based on tagging behavior and friendship
network of a particular user. Friends generally share common
tastes and it is likely for them to give a good idea of what
the user would like.

The similarity metric proposed in 4 gets the user similarity
based on item-tag pair and friendship. This is then combined
with item-item similarity with the user’s friends and return
the top N recommendations of a particular user.

A. Item-Tag similarity

A measure of common tags by users gives would be
inappropriate since two different users could give the same
tag to totally different items. Also, measuring common items
alone could again give rise to a situation where the tags
assigned to the common items by the users are different.
Here a metric is used to measure only the common tags
assigned to the same item by users.

TSimu,v =

∑
Iu∩Ii

|Tuvi |
2

|Tui |×|Tvi |
Max(|Iu| , |Iv|)

(13)

B. Friendship based similarity

For a user u in the system, AvgFu (the average of the item-
tag based similarities of all the friends of u) is calculated.
The item-tag similarity measure is then amplified if the friend
user v is very similar to u.

FSimu,v = Tsim
1

1+FSimu,v+AvgFu (14)

C. Overall similarity

Simu,v = α× TSimu,v + (1− α)× Fsimu,v (15)

D. Recommendation Algorithm

Here, the friends of a given user u are taken. The interest
level of a user u to a particular item that is selected by friend
v depends on two main components: the similarity of v to u
and the similarity of item i selected by v to the items tagged
by u. In order to find the similarity of items in view of tags
that are assigned to them by users, the weighted Jaccard
similarity is used.

SimItemi,j =

∑
Vi∩Vj

Min(Vi(t).Fq,vj(t).Fq)∑
Vi∩Vj

Max(Vi(t).Fq,vj(t).Fq)+
∑

Vi∪Vj−Vi∩Vj
Max(Vi(t).Fq,vj(t).Fq)

(16)
Here vi is denoted to the vector of item i that has pairs

of tag name and frequency of that tag. The values calculated
above - Overall Similarity and Item Similarity are then input
to the algorithm described in the paper. The algorithm is as
follows:

Step1:
For v as neighbor of u:

For item i in vs item list
For item j in us item list

ItemInterests[i].ADD(j, SimItemi,j*Simu,v);
NIAvgs.ADD(i, ItemInterests [i].AVG());

Step2:
For gi as NIAvgs.Groupby(i)

TopNs.ADD(gi.Key, gi.Max());
Step3:
TopNs.Sort();
RETURN TopNs.Select (Item);
First, multiplications of item similarity of item list of user

u and her/his friends item lists and user similarity of u and v
are stored in an array of lists, called ItemInterests. In the next
step the average value of duplicated items is calculated and
stored in NIAvgs. The algorithm finds the maximum value
of each item and returns a sorted list of items based on their
final values.

E. Results

The baseline model used for comparison was a global
artist recommender that recommended the most popular top-
N artists.

We used the all but 1 protocol similar to what Tso-Sutter
used in his paper1 to calculate and compare the recall values.

As can be seen in figure 7, this model only marginally
performed better then the baseline for certain values, but
most of the pattern was rather random and no proper trend
could be established as the Tag Similarity (Tsim) between the
users were mostly zeroes and the matrix, was rather sparse
to compute any predictor effectively. For this given dataset,
this model is not ideal and could perform better with a more
dense network matrix.

A further refined model can be extracted from this by
incorporating the Group Similarity between the users and
their groups, but this extension is highly computational and
was beyond our time frame to perform a group similarity on
this network. Also, a lastfm API to extract group information
given a particular user was not available. This could have
probably improved the results.

Fig. 7. Percentage improvement in recall values over the baseline
model

VI. CLIQUE PERCOLATION BASED MODEL

As the network was extremely dense, a clique percolation
analysis was performed to see if there was a pattern in which

users in a given clique behaved. The network was broken
down into smaller Subgraphs which formed independent K-
Cliques networks. For our analysis we observed for clique
size (K) varying from 2-10.

The designed method of recommendation was subdivided
into 2 approaches:

• TopN Frequency based Item suggestion
• Top-N Normalized Frequency based item suggestion

A. Baseline

Artists with the top N playcounts were recommended to
every user.

B. TopN Frequency based Item suggestion

In this approach we analyzed Each Sub-Network for a
given K-Clique by splitting the user in Training set(70%
users) and Test set (30% users) and counting the Frequency
of the Artists in the Training Set and recommending the Top
3 Artists to the Users in that observed clique to the Test Set.
The Performance of this model was gauged by the Recall of
Artists for each user.

Drawback : Since we added the frequency of artists by
each user directly , there is a possibility of the ranking to
be biased to an artist because of certain users who view the
artist excessively or too rarely. To get rid of this bias we
added the weighted frequency by each user. This method
takes negates the bias by taking the viewing activity of each
user and Normalizing the frequency.

C. Top-N Normalized Frequency based item suggestion

In this method, we analyze the viewing frequency of
each user and normalize the overall frequency of an artist
by the given users maximum view. We then perform the
similar process of taking the Normalized frequency count
and ranking the artist in the given clique.

D. Results

The top 3 Artists acquired by each of the models is
suggested to the users in the clique and the Recall is
considered as the performance metric for this process.

As can be seen from figure 8, the Top-N Normalized Fre-
quency based item suggestion model performed marginally
better than the TopN Frequency based Item suggestion model
as can be seen from the blue and green lines respectively.
Also, it can be seen that it performs much better than the
baseline represented by the red line. The graph gives a good
intuition on the results that were developed. It shows that
as the clique size increases, we are seeing an improvement
in the precision values that are obtained up to a certain
point. The drawback of these models is that it can be a good
predictor only if the user has a densely connected network
of friends although the model still predicts better than the
baseline.

Fig. 8. Percentage improvement in recall values over the baseline
model, Red- baseline, Blue- Model C, Green- Model B

VII. CONCLUSIONS

In Section 4, 5, and 6 we have developed 3 models that are
models independent of each other. One is based on implicit
playback count of every user, one does collaborative filtering
analysis on the tags assigned to artists by different users and
also combining it with friendship relationships. The other is
based on friendship network in which recommendations are
made only based on clique behavior. The results, drawbacks
and scope of improvement of the different models have been
assessed and evaluated in their respective sections. How-
ever,there is no clear baseline to evaluate the performance of
these models against each other. The results that have been
obtained are mostly consistent with the ongoing research.1,4.

REFERENCES

[1] Maciej Pacula. A matrix factorization algorithm for music recommen-
dation using implicit user feedback.

[2] K.H.L. Tso-Sutter, L.B. Marinho, and L.Schmidt-Thieme. Tag-aware
Recommender Systems by Fusion of Collaborative Filtering Algo-
rithms, Proceedings of the 2008 ACM symposium on Applied com-
puting, ACM, USA, 2008, pp. 1995-1999

[3] Recommender Systems Handbook. Kantor, Paul B ; Ricci, Francesco
; Rokach, Lior ; Shapira, Bracha

[4] Huizhi Liang, Yue Xu, Yuefeng Li, Richi Nayak, Collabora-
tive Filtering Recommender Systems Using Tag Information, 2008
IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology

[5] Last FM API http://www.last.fm/api/
[6] Yifan Hu, Yehuda Koren, Chris Volinsky. 2008. Collaborative Filtering

for Implicit feedback Datasets. Proc. IEEE International Conference
on Data Mining (ICDM 08), IEEE CS Press, pp. 263- 272

