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Abstract—Today, most people enjoy music online and the
music providers use personalized music recommender systems to
recommend songs to users. In our project, we first collected 10
million users’ ”’like” records from xiami.com, one of the biggest
online music provider in China with our own crawler. After
analyzing, we found the dataset has two important features: a
majority of “’like” records are for a little part of songs and songs
are grouped into communities when considering the ’like” they
received from common users. Based on this observations, we tried
to use three different ways: latent-factor model, item-rank and
graph-based method to predict users’ attitudes towards unseen
songs and evaluated their performance on our own test set. The
result shows that our methods have the best performance.
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I. INTRODUCTION

Nowadays, enjoying online music service has gradually
become an important part of peoples lives. Facing the huge
number of available songs (more than 20 million on Pandora),
people usually rely on the music providers music recommender
systems to find new songs. In such case, how to provide a
highly personalized music recommender systems for each user
and recommend exactly the kind of songs they like become a
crucial problem.

As a specified recommender system, the music recom-
mender system can benefit from many classic general rec-
ommending algorithms, like k-means clustering[1], k-nearest
neighbor collaborative filtering[2] and SVD[3]. Though the
general recommender systems has been researched for a long
time and has many matured theories, there aren’t many works
for the music recommender systems. In[4], George Tzanetakis
and Perry Cook have proposed a k-means clustering algorithm
based on songs’ audio features and in[5], Aggarwal and Wolf
implemented a algorithm for graph theoretic approach. The
methods in these works are still to naive and their research are
all based on a very small dataset, which is definitely different
from the real situation.

In this assignment, we collected around 10 mil-
lion like records from one of the biggest online music
provider(xiami.com) by our own crawler and tried three dif-
ferent methods to build the recommender system: latent-factor
model, item-rank and graph-based methods. Our own dataset
shows some important features which are different from the
book review records in assignment one and the result shows
that the graph-based model has a better recommender accuracy.

The remaining parts of this report are organized as this:
Section 2 detailed describes how we collect these data and
analyze some important features of this data set; Section 3 and
4 introduced how we applied the latent-factor model and item-
Rank into this problem and Section 5 explained our graph-
based method. How we constructed the test dataset and the
performance evaluation are explained in the Section 6 and the
last section is our conclusion.

II. DATASET ANALYSIS

In this section, we first describe how we collected our
training data from the web with our own crawler, then we
will use graphs to illustrate two important properties of this
dataset: 80-20 rule and communities. At last, there will be a
thorough analysis about how the feature of the dataset will
affect the performance of our music recommender systems.

A. The data collection process

There are several biggest music providers in the world.
In the north of America, most people use iTunes, Pandora
or Spotify. If we could collect their data about people’s like
or dislike, it would be wonderful. However, after survey, we
found these providers’ user data were either invisible or hard
to grab by crawler. At last, we decided to collect data from
xiami.com, which has more than 80 million users and is one
of the biggest online music provider in China. Each user in
this website has an unique user ID and so does each song and
each artist.

We implemented a simple Java web crawler to scan users
personal music library (contains the songs they marked as liked
and is open to everyone) and download these information. Each
record in our dataset has three attributes: user ID, song ID and
artist ID. We totally scanned around 1 million users. For many
users are not active, we only download data from those who
have liked more than 20 songs and finally collected 10 million
pieces of like records from around 100000 users (to spped up
the processing, we finally only use 6 million records of all).
Unlike Pandora, xiami.com doesn’t have the “dislike” buttion
for user and so we cannot know which songs the user doesn’t
like.

B. The 80-20 Rule in this dataset

The 80-20 rule, also known as the Pareto Principle, states
that, for many events, roughly 80% of the effects come from
20% of the causes. This rule is usually used to describe some



economic phenomenons, but is also correct when we study the
distribution of the amount of “like” that each song received.

Specifically, We studied 6 million records in total and
780 thousand songs are included. In average, each song is
expected to receive around 8 likes. However, after analysis we
found that a few of them received a huge number of likes the
majority of receive very few likes. For example, half of all
songs (382 thousand songs) only received one like! There are
612 thousand songs (78% of all) received less than 5 likes and
received 1 million likes (17% of all) in total. The other 22%
songs just received all other 83% likes. This phenomenon can
be expressed in figure 1: only 20% songs received the 80%
likes.
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Fig. 1: Distribution of the amount of received ’like

C. The communities in the dataset

When we talk about music, we all know that there are
many different music styles just like country, rock, blues, jazz,
etc. Generally speaking, different people may have different
tastes and may like one or several kinds of music of all. So,
if we represent each song as one node in a network and add
one edge between these nodes if two songs are liked by the
same person, its straightforward to think that there will be
some communities in this network and each community may
represent a certain kind of song taste or style. If people like
one song in this community, its high probably that he will
like the other songs in this community. To verify this idea,
we constructed a network with a few songs in the dataset and
the weight of each link means the amount of common users
between the two songs. Finally we get the following figures:

Fig. 2: The communities in very popular songs
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Fig. 3: The communities in normal popular songs

Figure 3 represents the network of a few songs randomly
selected from the song set and they all received more than 500
likes. Actually, due to the large number of likes, nearly every
two songs in the set has common links. To make the figure
clear and easy to understand, we only keep these edges with
weight more than 100 (both liked by more than 100 users).
We can seen that there does exists several communities, but
not very clear. In figure 4, we we chose the songs with likes
number between 50 and 52. This time we get a much clear
representation of networks, which confirms our expectation of
communities in song sets. The reason that these less popular
songs have a more clear structure of communities may be
explained like this: for those really popular songs, they may
gather some common features that people all like thus there
doesn’t exist obvious groups. But for those less popular songs,
they may only be liked by some people with certain taste,
therefore it is easier to find the communities.

D. How would these features affect our recommender system

This music recommender system can be solved as a classic
Collaborative Filtering (CF) problem. In general, there are two
kinds of ways to do this: Memory-based and Model based.

The memory-based ways predict users’ attitudes towards
new items according to other similar users’ attitudes. The
advantages of memory-based is that it does not need to train
data and therefore is simple to realize, and it has a strong
scalability. The core issues of memory-based method is the
amount of data and the definition of similarity. Obviously, the



more records we have, the more similar users or songs we
could find, then we can get a better prediction. As for the
similarity, we can use cosin similarity, Jaccard similarity or
path-based similarity in graph-based methods.

The model-based methods try to build a model to directly
reflect the relationship between the songs features and peoples
attitudes. Latent factor model is one representation.for this
methods. The advantages for model-based method is that it can
have a better performance when the data is really sparse and its
prediction process is really fast, for what you need to do is just
calculate the output of a certain function. The disadvantages
of model based methods are that it is really expensive to train
and dont have a good scalability.

As for our problem, it has following important features:
(1) majority records are related to a small percent of songs:
according to the observed 80/20 rules, most likes are for the
top 20% popular songs. Because peoples time is limited and
will only listen to a quite small number of songs every day,
these 20% songs have already consisted a big enough data set
to recommend songs. So, to reduce the space and computing
complexity, we removed around 50% less popular songs from
the dataset; (ii) our data is not complete: because of the design
of xiami.com, we don’t know which songs users don’t like.
This means, if people listened to 10000 songs and likes only
100 songs of them, we can only see that 100 songs. What’s
more, the rating for the user is 0-1 based rather than a 1-5 start
based, which further blur the users’ attitudes. We think this
incompleteness will bring a big accuracy issue in model based
methods; (iii) these are communities in the songs: based on our
study, we found that many songs are grouped into communities
and if people like one songs in the communities, they are very
likely also like the other songs in the communities. In this case,
the memory based algorithm would have good performance,
for it directly utilize these relationships to make predictions.

Based on these ideas, we tried three different methods
to build the recommender system: latent factor model, item
rank and path number model. The details are described in the
following section.

III. LATENT FACTOR MODEL

In this section, we use the latent-factor model to train the
data, just like what we did in Assignment 1. We fit a predictor
of this form

like(user, song) ~ a + Buser + Bsong

The result will be rounded off to either O or 1, which represents
the user likes or doesn’t like the song. We use the data collected
from over 1 million users to train the predictor, and for the
songs that never appeared in the train data, we just think the
like value is 0 no matter for which user. As you can see, this
predictor is relatively quite simple and naive. And by using
this naive predictor, we get the following prediction result

true positive | false positive
96.3% 81%
true negative | false negative
19% 3.7%

From the result, we can easily tell that the performance of the
predictor is not very good, it basically thinks that most of the

songs will be liked by the user. Although it does a good job
on predicting the true like songs, it marks too many songs as
like. Therefore this predictor actually will recommend many
songs that the user doesn’t like.

IV. ITEM RANK

In this section, we implement an algorithm called Item-
Rank[6] to give a rank for each song with respect to every
single user. The higher the rank, the more possible that the
user will like this song.

This algorithm is similar to PageRank algorithm. First we
will define a nxn matrix called C, where n is the amount of
total songs. For song; and song;, NV;; is the number of users
who love song; and also song;. And
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When computing the rank, we use a ItemRank value SR,,;
for every user, this is a vector contains the attitude of a user
towards all the songs. The equation is expressed as

SR,, =a-C-SRy, +(1—a) - dy,

Where d,,; is a vector built by the like value, which means
for every song, if the user likes this song, then the pair equals
1 in the vector, and otherwise equals 1. And « is 0.85, this
is a common choice. By using this equation, we can compute
all the like value for every user with respect to every song by
iteration, and it only needs about 20 iterations to converge.

The algorithm is designed to find both propagation and
attenuation between songs and users. In other words, if a liked
song from a user is connected with another song, and C;j is
large, this means the user would possibly like the other song
too.Actually, the effect is quite satisfactory when using this
algorithm on a small set of data. However when trying to use
this algorithm to the train data with over 1 million users and 10
million songs, the computer cannot handle such a computation,
just because the matrix needed for computing is too large. So
this model is not suitable for this problem too.

V. GRAPH-BASED ALGORITHM

In this section, we tried to used a graph model to represent
our data and build recommender systems based on that model.
In our graph, every song and every uses is a node, and edges
between nodes means a song is liked by a user, so for a user
node, the degree of it is the number of songs he liked, and for
a song node, its degree means this song is liked by how many
users. It is obvious that our graph is a bipartite graph.



Fig. 4: Graph model for users and songs

A. Path number based model

The idea behind this method is quite simple, which state
that the possibility of whether a user would like a song is
closely related to the distance and the number of path between
the user and the song in the graph. The shorter path and the
more paths we can find, the more likely that the user will like
that song. The assumption behind this method is similar to
the k-nearest-neighbors methods’ idea, which believe that user
may like these things which are liked by similar users. But
with the graph model, we can utilize more informations in the
dataset, for those not directly connected nodes can also make
contribution.

When we try to implement this model, we have met two
important problems. The first one is that due to the huge
data size, the graph would be really really big and memory
consuming. Therefore, no matter the construction process or
any path searching would very slow. To deal with this, we
further shrinked our dataset by remove users and songs only
related small size of records. After test, this only has a very
small effect on the prediction result. The second one is that
we found the relationship between users and songs are similar
to the relationship between people in a social network, for
example it satisfies the small-world phenomenon: we can cover
nearly all songs from any user within 5 steps in the graph. This
makes the path length difference much less useful, for most
songs have the same shortest path length. In this case, we
decided to only consider the songs we can reach in 3 steps and
use the number of path as the major parameter for prediction
or recommendation. For those songs we can not reach in 3
steps, we just think the connection between the user and the
song are too weak and impossible to lead to a like’.

In this method, if we want to generate a list of songs that
the user may like, namely make a recommendation, we can
first get the number of paths for all songs we can reach in
three steps and sort these songs according to the number of
path in descending order. Then we can just recommend the
first several songs to users. If we want to predict whether a
user would like a song, then this becomes a logistic regression
problem. Using validation set, we can find a best value k, such
that for every pairs with more than k paths, we predict that

the user will like this song. If not, we just do the opposed
prediction.

B. Points to improve the prediction performance

1) Use a more complex graph model: In our current graph
model, we only use the information of users and songs, but
ignore the artists. So, a good idea is that we can add artist into
the graph and get a graph like below:
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Fig. 5: Graph model with user, song and artist

What’s more, we can introduce different weight for differ-
ent edges. A straightforward way is that we give small weight
for those very popular songs and bigger weight for those less
popular ones. Because according to our analysis in section
2, we found that because very popular songs are liked by
everyone, so they are not grouped into communities and may
not yield so much information for the users taste.

2) User Path-number/Song number to do prediction: One
obvious defect of the naive algorithm is that different user has
a different number of already liked songs, which means their
out degree in the graph may vary a lot. So, using a unified
boundary for all users seem to be unreasonable. To improve
this, we can divide the path number by the number songs that
the user have already liked and get the path/user rate and this
can more accurately reflect the relative connections between
users and songs.

3) Add more features for the logistic regression: The path
number of the path/user rate are only one valid features. In
our dataset, we can utilized much more features actually, like
the number of total likes one songs received, the total number
of songs that the person liked. We can get a feature vector in
this way and use gradient descent to get the best parameters
for prediction.

C. Another solution based on cosine similarity

This solution is based on the idea that people intend to like
the music that is liked by those whose preference is similar
to him/her. The first step is same as before, we find all users
with at least one same liked song. Then for these users, we



calculate their cosine similarity with the original user, and sort
users in descend order of cosine similarity.

After analyzing the trend of cosine similarity, we found that
cosine similarity descend quickly after the first a few users,
so it can be considered that among all users who share same
liked songs, only a few have a high similarity with the original
user, since the graph grow very quickly when we consider all
users with same liked songs, the less similar users preference is
surely less similar to the original user, so we should emphasis
on these users with high similarity.

We use the value of the cosine similarity as a kind of
weight for a user, then accumulate songs’ prediction value,
for example, for a user with a cosine similarity of 0.8, we add
all songs’ prediction value in his liked list by the value of his
cosine similarity. Apply this process to all selected users, and
we will get a list of songs with accumulated weighted value,
and then sort the result in descent order, output the prediction
result.

The key to the accuracy of this prediction model is how
many or in other words, what value of the ratio of the users
are we going to select, there is a trade off on the ratio, so
further examination on it is also required.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of these three
methods on users recent playing history. We first introduced
how we built the test set and then show the performance and
give a detailed analysis.

A. Construct the test set

There are generally two ways to evaluate the the perfor-
mance of recommender systems: offline and online. If we can
directly access the user, we can use an online method, namely,
give different user different recommendation and observe their
feedback. But for us, we can only use the offline method. But
even an offline test set is hard to get in our project. Because
we don’t know what songs users are explicitly dislike, we can
only regard the songs that users did listen to but didnt mark
as “like” as dislike”. But this is obviously not perfect: First:
the songs that users listened are usually recommended by the
music provider’s system, so these songs are all already has
a high probability that the user will like. This will make the
predict much difficult. Second, it is almost sure that people
like these songs that they marked as “like”, but its not sure
that they don’t like the others. Whether people would marked
one song as ’like” may depend on many factors, like the time,
the user’s mood at that time, if the user are doing something
else.

The test set contains the recent playing history collected
from 248 active users and has around 60 thousand records.
For each record, if it is has already been marked as “like”,
then we mark it as “like” and delete the “like” record from
the train data set; if not, we directly marked it as “not like”.

B. Performance Evaluation for Prediction Task

We decide to search a limited part of our ranked result,
and then for every song, if it is not in test data, that means
it is a song not yet be recommended by xiami.com, therefore

is irrelevant in our test data, and we can simply ignore these
songs. Then we measure the ratio of songs marked as like
and disliked in test data, as removing irrelevant songs won’t
change the ratio of these two. Also the total amount of songs
to be recommended is also relevant in this task since a fewer
number of songs usually means a better result but losing many
songs we want to predict.

For the prediction task, we first split the test set above
evenly into training set and test set. We use the train set to get
the best parameter for our prediction model. As the fore the
measurement, we use the classic precision-recall and F1 score
to measure the performance.

. tp
precision = —————
tp+ fp
t
recall = P
tp+ fn

precision x recall
F1 score =2

precision + recall

We tested the following four methods’ performance:
(1)simply based on the number of likes that song received;
(2)based on the number of paths between the song and the
users; (3)based on the rate of path-number and song liked;
(dlogistic regression based on the following features:

[1, numberpqins, like receivedsong, like receivedsong s artist)

and all of them has been normalized with this function, where
k is the mean value for each feature:

—num

flhum)=1-e

The result is listed in the following table:

Method Precision | Recall | F1 score
Song’s "Like” 0.1983 0.8875 | 0.3242
Path Number 0.2188 0.7875 | 0.3423
Path Number Rate 0.2066 0.9375 | 0.3386
Logistic Regression | 0.2377 | 0.8081 | 0.3674

From the table we can see, using the number of path and
doing logistic regression with more features can improve the
performance. But Use the rate seems to decrease the result
somehow. This may because the relationship between the path
numbers and the song already liked are a more complex than
we expected and the simple division can not reflect it. But no
matter in which method, the F1 score are all very small. As
stated above, the test set we collected from the web may not
be a good test set for 0-1 prediction. If people click “like” for
one song, he certainly likes that song, but if he don’t not click
it, it may just because he forgot it. What’s more, in most cases,
these songs people listened online are already selected by the
music provider, so the difference between them are already
very small.



C. Resutlt for cosine similarity model
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Fig. 6: cosine model with user, song
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Fig. 7: cosine model with user, song and artist

For graph above X axis stands for the percent of the users
we choose, and Y axis stands for the accuracy(ration of songs
we found that are in test data and with tag ’like’=1). We decide
to search a limited part of our ranked result, and then for every
song, if it is not in test data, that means it is a song not yet
be recommended by Xiami, therefore is irrelevant in our test
data, and we can simply ignore these songs. Then we measure
the ratio of songs marked as like and disliked in test data, as
removing irrelevant songs wont change the ratio of these two.
Also the total amount of songs to be recommended is also
relevant in this task since a fewer number of songs usually
means a bette result but losing many songs we want to predict.

From data above we can see that the ratio of like/dislike
goes down as we choose to pick more users as similar user to
vote for songs, but the total songs being picked goes up. And
when we added artists information to the graph, and consider
artists as users, then the overall accuracy will slightly changes
while in both cases the trend of accuracy remains the same.

For the test data itself, the ratio is roughly 0.3, consider
the truth that most users uses the recommendation system of
Xiami, this can be partly considered as the accuracy of a
baseline. But a major reason for the truth that this accuracy is
lower than ours is that we only recommended a part of songs
that are recommended by Xiami, so the accuracy is based on
cost of losing completeness.

VII. CONCLUSION

We did four things in our project. Firstly, because we are
really interested in the music recommender system but there
is no available data set, we wrote crawler and select the data
we want use and then build our own music recommendation
dataset. Secondly, we did a deep analysis on this data set. We
found that most records are about only a few songs so we
use this knowledge to reduce the dataset size and facilitate the
processing; we found the songs are grouped into communities,
so we think recommender systems based on neighbors and
similarity would be good. Thirdly, we built the recommender
systems and test it. We tried different methods to do that and
do some optimizations on that. Finally, we construct the test
set and evaluated the our systems’ performance. But because
of the limitation of the data we collected, the performance isn’t
so good, we did found that our methods made improvement.
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