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ABSTRACT 

Automatically categorization is of great significance nowadays 

where massive data flows to us every day, especially for 
companies receive and need big data. It is especially important 

when there are some data unclassified or unlabeled, how can we 

define the categorization is very challenging. What we do is to 

categorize a review text into some pre-defined categories based on 
its text features. We did some preprocessing and feature 

processing to improve the accuracy. And we tried several methods, 

either basic or advanced, including Linear Regression, KNN, 

Decision Tree, Neural Network and Nonlinear SVM. Then we 
compare these methods and analyze the results. Finally we come 

up with a conclusion. 
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1. INTRODUCTION 
The goal of our project is to predict the categories for a book 

review from the data set of book review data. We came up with 

this idea when we recall that when we are doing assignment 1, 

when we wanted to extract the categories as a feature, we noticed 

that not all book reviews have category classifications. But it’s 
common sense that every book should have at least one category. 

So we want to predict the categories based on the these data. 

We first did some preprocessing to extract features in Section 3. 

And then did feature processing to improve the accuracy in 
Section 5. We tried several methods, either basic or advanced, 

including Linear Regression, KNN, Decision Tree, Neural 

Network and Nonlinear SVM as in Section 6. Then we compare 

these methods and analyze the results. Finally we come up with a 
conclusion in Section 7. 

2. DATA SET 

2.1 Data set chosen 
We reuse the book review dataset in assignment 1, which is a data 

set about book reviews. In the process of studying of assignment 1, 

when we wanted to extract the categories as a feature, we noticed 

that not all book reviews have category classifications. But in 

common sense, each book should have its own category. So we 

decided to build a data processing system to help users define the 

categories of books according to the review texts they’ve written.  

Each datum consists of 9 fields, including: 

'itemID', 'rating, 'reviewText', 'helpful', 'unixReviewTime', 

'category', 'reviewerID', 'reviewTime' and 'summary'. 

What we want to do is predict the categories of books based on 

the review texts. 

In our assignment 2 project, the dataset are lines of data with 

category (in train.json.gz, approximately 120k samples). 

2.2 Exploratory Analysis 
First we count the all the categories and see the distribution. We 

can see from the figure 1 that there are many categories, while the 
top categories appear very often and the other appear so rarely. 

 

Then we can see from figure 2 about the top 20 categories. The 

last category, which is ‘Anthologies’ still has a count of 6,000 out 

of the total 120,000 reviews, counting for 5% of the total number. 

So this is sufficient for further processing. 

 

 

3. PREDICTIVE TASK 
Our main work is to predict the categories based on the review 
text.  

3.1 Data pre-processing 
Apart from those reviews with no categorization, there are also 

some issues about categorization in the reviews.  

Figure 2. Distribution of top 20 categories sorted. 
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Figure 1. Distribution of categories sorted. 
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The category field consists of several lists of strings, such as 

“books”, “children’s books”, and so on. At first we treat each 
string as a category, then merge all of the lists into one category 

list. In this process, we delete duplicate string. But after this 

process, we found many nonsense categories, such as “books” 

(which seems to appear in every sample), “Kindle Store” and 
“Kindle eBook” (which usually appear together, classify them 

separately seems nonsense). 

To find out what’s going on, we visited the amazon.com which 

seems to be the data source. And it turns out that the ‘list of 
categories’ seems to be the hierarchy categories. So we discard all 

categories except the last category in each list. Because this is the 

category on the lowest layer. In other words, this categorization is 

the most specific one and thus best describes the book. For  

example, if there’s a category list like “Books => Education => 

School & Teaching”. Then we will process it into “School & 

Teaching”.   

What’s more, there are still more than 300 categories, with the last 

280 categories less than 5% of the total book reviews. In order to 

ensure the accuracy of predictions, we discard these categories. 

 

Table 1. The top 20 categories 

Contemporar
y 

Literature & 
Fiction 

Romance 
New Adult 
& College 

Coming of 

Age 

Romantic 

Comedy 
Urban Paranormal 

Suspense 
Women's 

Fiction 
Erotica 

Paranormal 

& Urban 

Contemporar

y Women 

Romantic 

Suspense 
Military Fantasy 

Vampires Series Anthologies 
Werewolves 
& Shifters 

 

So for various reasons, we first do some pre-processing to the raw 

data. The pre-processing includes three parts: 

i. Process the category field of each datum as we stated 

above to discard all the unnecessary fields. 

ii. Compute count for every categories. Discard 

categories except for the top 20 categories with most count. 

(Table 1) 

iii. Discard all samples without a categorization. 

3.2 Evaluation model 
Given this classification prediction is a multiple classification, 

which means that a book can be classified in two different 

categories. Thus the evaluation criteria is not something like MSE 

(Minimum Square Error) or MAE (Minimum Absolute Error). 

We need to both look into the false negative errors and false 

positive errors. 

In order to evaluate the accuracies of different models we use, we 
use four main criteria to evaluate the models. These four criteria 

are: FPR (False Positive Rate), FNR (False Negative Rate), BER 

(Balanced Error Rate) and ACC (Accuracy). 

𝐅𝐏𝐑 = 𝐅𝐚𝐥𝐬𝐞 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 / #𝐥𝐚𝐛𝐞𝐥𝐞𝐝 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞  

𝐅𝐍𝐑 = 𝐅𝐚𝐥𝐬𝐞 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬 / #𝐥𝐚𝐛𝐞𝐥𝐞𝐝 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬  

𝐁𝐄𝐑 =
𝟏

𝟐
∗ (𝑭𝑷𝑹 + 𝑭𝑵𝑹) 

𝐀𝐂𝐂 =
𝐓𝐫𝐮𝐞 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 + 𝐓𝐫𝐮𝐞 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬

#𝐥𝐚𝐛𝐞𝐥𝐞𝐝 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬
  

After the pre-processing, there are about 120,321 samples. We 

divide the data into three parts: 

a) Training data set. This includes the datum 1 ~ 70000. 

b) Validation data set. This includes the datum 70001 ~ 

100000. 

c) Test data set. This includes the datum 100001 ~ 110000. 

3.3 A simple baseline 
In order find a standard for later complex models, we start by 
define a simple baseline of this prediction. 

We start by the idea that some specific ‘functional’ words can 

help us categorize. Like what we do in homework 1, if a review 

text consists of the word ‘Wizard’ or ‘Witch’, we classify it into 
‘Fantasy’ books. We want to define such two words for each 

category. 

It is realistic to define these words by coming out of nothing, so 

we let program to do this thing for us. For each category 
separately we find all the average words count within the reviews 

of this category and average words count within the reviews not 

of this category. Record these two count as 𝑪𝒕 and 𝑪𝒇. We find 

two words with 𝒎𝒂𝒙(𝑪𝒕 −  𝑪𝒇), and define these two words as 

the ‘representing’ words for this category. This is the idea that if a 

word is more likely to appear in such category, and less likely to 
be in the text not in such category. Then this word maybe 

somehow have some connection with this category. 

So when we are about to predict a review’s categories. We check 

for each category if the ‘representing’ words of this category is in 
the review text. 

The performance of the baseline will be discussed in details in 

later sections. 

3.4 Assessing validity of the predictions 
One standard for assessing the validity of our predictions is the 
baseline we stated above. We will compare the FPR, FNR and 

BER of our prediction to the baseline. Another way is to analyze 

the ratio of FPR and FNR, whether a too high FPR or too high 

FNR is not acceptable. 

4. RELATED WORK 
There are many related work on categorization base on text. In [1] 

talks about the automated categorization of texts into some 

predefined categories. This research to this problem is based on 

some advanced machine learning techniques. First a general 
inductive process automatically builds a classifier by learning 

from a set of preclassified documents, and the characteristics of 

the categories. This survey discusses the main approaches to text 

categorization using the machine learning methods. They 
discussed mainly about the following three problems: document 

representation, classifier construction, and classifier evaluation. 

In [2], the book first discusses about the Classification and 

Regression Trees algorithm. This book also presets some 
examples from Richard Olshen's experience working in the 

Medical School at UC San Diego, and the method is widely used 

over the past 20 years. 

In [3], there is one more book talks about classification and 
regression trees. But this book stands on the position that fifty 

years have passed since the publication of the first regression tree 



algorithm. So this book more talks about new techniques that have 

added capabilities that far surpass those of the early methods. The 
idea is that modern classification trees can partition the data with 

linear splits on subsets of variables and fit nearest neighbor, 

kernel density, and other models in the partitions. So regression 

trees can fit almost every kind of traditional statistical model, 
including least-squares, quantile, logistic, Poisson, and 

proportional hazards models, as well as models for longitudinal 

and multiresponse data. This article surveys the developments and 

briefly reviews the key ideas behind some of the major algorithms. 

What’s more, in [4] and [5], there are similar data sets that we are 

using for categorizations. In [7] and [8], introduces some of the 

most advanced methods for categorizations. In [9] discusses a way 

to reduce the dimensions in features which we are going to use in 
later sections. 

5. FEATURES 
Text cannot be directly categorized by a classifier. So we need to 

find a way to extract feature from each review text, and use the 

same format feature for classification. 

As we stated before, we use the words in the review text to predict 

the categories. Given that there are more than 20,000 different 

words, it is not reasonable to taken all these 20k words into 

account. So we need to cut down the features before we run our 
models. 

5.1 Semantic processing 
First of all, many words like the pronouns, particles and 

prepositions definitely won’t help us make predictions since they 

are ‘meaninglessly’ appearing in every sentence. So we use a 
stop-words list to list out all the words abandoned. Then we also 

do the stemming. For words like ‘logic’, ‘logistics’ that have the 

same roots we treat them as the same because they mainly have 

the same effect in the sentences. 

This reduces the different words number to about 18,000. 

5.2 Unigram selection 
Commonly our approach is the bag-of-words model, which 

defines a fixed length vector of appearance of words in a specific 

dictionary. To build this model, we count the times of appearance 
for each word. 

Since classification of different categories may be affected by 

different words, so we decided to select unigram for each category 

separately. At that time, for a specific category, we give samples 
label {0, 1} which stands for belonging to this category or not. 

And for unigrams vector, we have a TF (Term Frequency) feature 

of the samples. 

By applying semantic processing, we have reduced some of 

meaningless words. Then, we need to further decrease the words 

number.  

By observation, we noticed that many words with very few 

appearance are not likely to be meaningful words, mostly are 
some random meaningless combination of characters and numbers 

(this may be due to the word segmenting progress or misspelling). 

And these words may even cause overfitting issue in our classifier. 

So we retain the 2000 most frequent ones and throw away the 
others, which appear at most 150 times in 120000 review texts.   

5.3 Chi-square method 
As we said before, we want to select different words for different 

categories. For example, appearance of ‘Children’ is a powerful 

feature for “Children’s book”, but less effective for “Literature 

books”. To find this relationship between feature and category, we 
used chi-square method. 

Table 2. The top 20 categories 

 Belong to 

category 

Not belong to 

category 

Word appears A B 

Word doesn’t 

appear 

C D 

(For a specific category) For each feature (word), we divide 

sample set into 4 parts. (See Table 2 above.) 

We define chi-square value as follows: 

𝛘𝟐(𝒘𝒐𝒓𝒅, 𝒄𝒂𝒕𝒆𝒈𝒐𝒓𝒚) =
𝑵(𝑨𝑫 − 𝑩𝑪)𝟐

(𝑨 + 𝑪)(𝑨 + 𝑩)(𝑩 + 𝑫)(𝑪 + 𝑫)
 

Which can be simplified to:  

𝛘𝟐(𝒘𝒐𝒓𝒅, 𝒄𝒂𝒕𝒆𝒈𝒐𝒓𝒚) =
(𝑨𝑫 − 𝑩𝑪)𝟐

(𝑨 + 𝑩)(𝑪 + 𝑫)
 

Since that: 

𝑵 = 𝑨 + 𝑩 + 𝑪 + 𝑫 

𝑨 + 𝑪, 𝑩 + 𝑫 are same for all words. 

By using this method, words owning larger values means they 
have stronger relationships with this category (whether negative 

or positive). Then we sorted the words by chi-square and choose 

the first 100 words as final feature (separately for each category). 

 

5.4 Bigram selection 
Although stop-words such as “the”, “not” usually don’t convey 

any information. But when they are combined with the next word, 

they can convey meaningful information. So we adapt bigram 

model to catch these most meaningful bigrams. In this progress, 
we first build a dictionary for all bigram start by stop-words.  And 

then choose 500 most frequent ones. After that, we adapt chi-

square on these bigrams for all categories, and choose 20 most 

influential for each category. 

5.5 PCA and LDA 
Both LDA (Linear Discriminant Analysis) and PCA (Principal 

Component Analysis) are the most commonly used 

dimensionality reduction techniques in pattern-classification and 

machine learning applications. The goal of these methods is to 
project a dataset into a lower-dimensional space with good class-

separability in order to avoid overfitting ("curse of 

dimensionality") and also reduce computational costs.  

In practice, PCA finds the axis with maximum variance for the 
whole data set where LDA tries to find the axis for the best class 

separability. So in our project, we choose LDA method to 

compress the dimension of feature. And to do this step, we use the 
LDA function in both scikit-learn and Matlab Toolbox for 

Dimensionality Reduction for calculation in python and Matlab. 



6. PREDICTION MODEL 

6.1 Linear regression 
We start by applying the common method, linear regression. 

Since linear regression is so familiar we are not going to introduce 
the definition and the common things, but state something we do.  

6.1.1 Feature Adjust 
In order to have better access to these specific data, which is of a 

great number of features. While we still use the bag-of-words 

model, we tried to get better features as we stated in Section 4. So 

after our processing, there are about 2,000 features. 

6.1.2 Result Adjust 
Since this is a multiple classification. It is not reasonable to assign 
the value from 1 to 20 to the categories. So we use a list of 20, 

each stands for a particular category. If a review is of a category, 

the field is labeled ‘1’, otherwise ‘0’. And the predictions are 

floats. So we judge by comparing the prediction of such field with 
0.5. 

6.2 K-Nearest-Neighbors 
K-Nearest-Neighbors (known as KNN) is a useful method for 

classifications. The main idea is to find the most k similar nodes 

in the training data with the one we are to classify. And classify 
by counting which classification these k-neighbors mostly belong 

to. In this situation, where each book review can have multiple 

categories. So for each category, we decide by if more than half of 

the k-neighbors are in such category. 

6.2.1 Similarity Definition 
Since there are too many features for each review – even after 
dimension reduction – there are more than 2,000 features. And 

different words should have different weights of effects on 

different categories. What’s more, we also should not consider the 

length of the review which doesn’t apparently varies from 
category to category. 

So it is not reasonable to use the similarity measurements like 

Euclid Distance or Manhattan Distance and so on. Instead, we use 

the cosine similarity based on the tf-idf to measure the similarities 
between all pairs of reviews. 

6.3 Decision Tree 
In some problems, features are nominal data, which has discrete 

values. For example, the taste of beer can be sour, like banana, 

and so on. We only use one dimension of value to express taste. 
And if there are many possible value, use (0, 1) feature to 

represent for each one will result in the scale of training data 

unreasonably increasing. 

In this situation, decision tree is a method worth trying. In our 
model, we use the most frequent unigrams combined with some 

bigram starting with stop-words. (As we talk about in Section 5) 

Then, each feature appear/not appear can be treat nonmetric. 

Although in this situation decision tree is not as suitable as former 
beer test example, but also worth trying.  

6.3.1 CART Algorithm 

6.3.1.1 Impurity 
If we have one feature, when the feature is 0, the output is always 
0, and if the feature is 1, the output is always 1. Then after we 

divide sample set by this feature, the samples in each subset 

should have same label. In this idealized example, the impurity of 
each subset is 0. In the root of decision tree, there are all the 

samples. And for each node of decision tree, we divide the 

samples in this node into 2 or more subsets according to one 

feature and gain lowest impurity of each side. 

 In our model, we define impurity as: 

 𝒊(𝑵)  =  𝑷(𝒄)𝑷(! 𝒄) 

This means for any one category (each time we train classifier for 

one category), the impurity is product of positive rate and 
negative rate in the set.   

6.3.1.2 Greedy Algorithm 
In each loop, we look at all leaf nodes. For sample sets assign to 

each leaf, we try to find feature to divide them into 2 parts, and 

maximize  
 𝛥𝑖(𝑁) = 𝑖(𝑁) − 𝑃𝐿 𝑖(𝑁𝐿) − (1 − 𝑃𝐿) 𝑖(𝑁𝑅) 

The N is original set, the NL NR are subsets, and PL is proportion 

of node in NR, 1 - PL is proportion of nodes in NR. And we find 

divide with max delta 𝑖(𝑁) among all nodes, adapt it and generate 

new tree as initial of next loop. 

6.3.1.3 Stop criterion 
 The criterion is generated by validation and cross validation. In 
all the 120000 samples, I select 80000 as train data, 20000 as 

validation data and 20000 as test data. In each loop I train the tree 

use train data. And then test the error rate on validation set. Once 

one node error rate doesn’t decrease, then the node doesn’t branch 
then. When all the leaf nodes stop branch, stop train procedure. 

6.3.1.4 Pruning 
Usually when tree is grown fully, we will meet overfitting. To 

avoid this issue, we adapt cost complexity pruning in our method. 

After the tree is fully grown, generate a series of 

subtrees{𝑻𝟎, 𝑻𝟏, 𝑻𝟐 … . 𝑻𝒏}, while 𝑻𝒊+𝟏 is always generate from 𝑻𝒊, 

and 𝑻𝒏 is the root alone. At step i the tree is created by removing 

a subtree from tree i-1 and replacing it with a leaf node with value 

chosen as in the tree building algorithm. Define the error rate of 

tree T over data set S as err(T,S). And the subtree that minimize 

𝒆𝒓𝒓(𝒑𝒓𝒖𝒏𝒆(𝑻, 𝒕), 𝑺) − 𝒆𝒓𝒓(𝑻, 𝑺)

|𝒍𝒆𝒂𝒗𝒆𝒔(𝑻)| − |𝒍𝒆𝒂𝒗𝒆𝒔(𝒑𝒓𝒖𝒏𝒆(𝑻, 𝒕))|
 

will be chosen. Prune(T,t) defines the tree gotten by pruning the 

subtrees t from the tree T. 

6.4 Neural Network 
Inspired by biological neural networks, artificial neural network is 

designed to model nonlinear mapping relationship between input 

and output. ANN usually perform as a system of interconnect 

nodes (which called “neural”). And in backpropagation neural 
network, there usually 3 layers of nodes: input layer, hidden layer 

and output layer. Nodes in adjacent layers have connection, while 

nodes in the same layer doesn’t connect. Nodes in hidden layer 

and output layer receive input from former layer with assigned 

weight, and then turn to output value by sigmoid function. 

6.4.1 BP Neural Network 

6.4.1.1 Nodes 
 In our NN model, we select 1000 features from unigram and 
bigram in the text. So the dimensions of input layer is 1000. And 

commonly we set hidden layer with 2000 nodes. 

6.4.1.2 Initial status 
We initial the weight matrix between each two layers with random 

value [-0.1, 0.1].  

6.4.1.3 Normalization 
Before training, we normalized the data of tf-idf score 



6.4.1.4 Training sample 
 We used 80000 samples from the dataset to train our neural 

network. The input for each sample is tf-idf score after 

normalization. And the output is whether this book belong to each 
category (30 dimensions of category in total) 

6.4.1.5 BP loop 
Select sample 𝒙 = [𝒙𝟏, … , 𝒙𝒏]𝑻 ∈ 𝑹𝒏 and expected output 𝑫 =
[𝒅𝟏, … , 𝒅𝒎]𝑻 ∈ 𝑹𝒎 

Calculate output 𝒀 = [𝒚𝟏, … , 𝒚𝒎]𝑻under the input 

From output layer, adjust the weight matrix 

𝒘𝒊𝒋
𝒍 (𝒕 + 𝟏) = 𝒘𝒊𝒋

𝒍 (𝒕) + 𝜼𝜹𝒋
𝒍𝒘𝒊

𝒍−𝟏, 𝒋 = 𝟏, … , 𝒏𝒍, 𝒊 = 𝟏, … , 𝒏𝒍−𝟏 

For the output layer: 

𝜹𝒋
𝒍 = 𝒚𝒋(𝟏 − 𝒚𝒋)(𝒅𝒋 − 𝒚𝒋), 𝒋 = 𝟏, … , 𝒎 

For the intermedia layer: 

𝜹𝒋
𝒍 = 𝒙𝒋

𝒍(𝟏 − 𝒙𝒋
𝒍) ∑ 𝜹𝒌

𝒍+𝟏𝒘𝒋𝒌
𝒍+𝟏(𝒕)

𝒏𝒍+𝟏

𝒌=𝟏

, 𝒋 = 𝟏, … , 𝒏𝒍 

Modify weight for all the samples 

Re-predict the output of all the samples, and calculate the error 
rate. If error rate below the stop criteria (20%), stop BP loop 

6.4.1.6 Optimization  
In adapting neural network, firstly I didn’t normalize the data. 

Then in later calculation, I find that although we use the tf-idf 

model, but the difference between features cannot be fully used. 

And some words appear more frequently will be more powerful 
than less frequently ones. So I normalized the feature. And in this 

process I find that only normalize on tf data can achieve the same 

result. This finding help me reduce the idf calculate step. And in 

ANN, the most parameters are hidden layer scale and BP step 
length. Firstly, I only set 500 hidden layer nodes to simplify the 

calculation. But I find that the model doesn’t converge. And then I 

add the node number from 500 to 1000, 2000. And the step length 

I set to be (dy/dx)/(10T). And this model can converge. And I find 
this method very tricky, the performance is highly uncertain. And 

after the error rate below 20%, the model usually come into 

overfitting on validation data. Which let me set the stop line as 20% 

6.4.2 Advantage and Shortcoming:  
Advantage is that it can find hidden relationship among features. 
But shortcoming is Slow. Since it use gradient, it doesn’t promise 

for global minimization.  

6.5 Nonlinear SVM Classifier  
SVM is a supervised learning model which aims to minimize the 

wrong prediction number. It is usually used on two type 
classification task. In our task, we use SVM to determine whether 

the Text is belong to appointed category. The original algorithm 

provided on class was a linear classifier. In our idea, the task of 

text categorization is a nonlinear problem. So we try nonlinear 
SVM to do this work by applying kernel trick. 

6.5.1 Dual form: 
 For support vector machine, weight is combination of samples: 

𝒘 = ∑ 𝜶𝒊𝒚𝒊𝒙𝒊

𝒏

𝒊=𝟏

 

And our optimize problem can transform to: 

𝑳(𝜶) = ∑ 𝜶𝒊𝒚𝒊𝒙𝒊

𝒏

𝒊=𝟏

−
𝟏

𝟐
∑ 𝜶𝒊𝜶𝒊𝒚𝒊𝒚𝒋𝒙𝒊

𝑻𝒙𝒊

𝒊,𝒋

 

= ∑ 𝜶𝒊

𝒏

𝒊=𝟏

−
𝟏

𝟐
∑ 𝜶𝒊𝜶𝒊𝒚𝒊𝒚𝒋𝒌(𝒙𝒊 𝒙𝒋)

𝒊,𝒋

 

For this form, k(xi, xj) is called kernel function. In linear SVM, it 

is product of x, but in non-linear SVM, we can use other function 

replace it.  

Gaussian kernel: In machine learning, Gaussian function is 

popular kernel function used in SVM classifier. 

Ad: Optimal the error rate. Classification is more accurate. 

Shortcoming: Time consuming 

7. RESULTS & ANALYSIS 

7.1 Evaluation Criteria 
As we stated in Section 3. In order to evaluate the accuracies of 

different models we use, we use four main criteria to evaluate the 

models. These four criteria are: FPR (False Positive Rate), FNR 

(False Negative Rate), BER (Balanced Error Rate) and ACC 
(Accuracy). 

𝐅𝐏𝐑 = 𝐅𝐚𝐥𝐬𝐞 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 / #𝐥𝐚𝐛𝐞𝐥𝐞𝐝 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞  

𝐅𝐍𝐑 = 𝐅𝐚𝐥𝐬𝐞 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬 / #𝐥𝐚𝐛𝐞𝐥𝐞𝐝 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬  

𝐁𝐄𝐑 =
𝟏

𝟐
∗ (𝑭𝑷𝑹 + 𝑭𝑵𝑹) 

𝐀𝐂𝐂 =
𝐓𝐫𝐮𝐞 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 + 𝐓𝐫𝐮𝐞 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬

#𝐥𝐚𝐛𝐞𝐥𝐞𝐝 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬
  

7.2 Baseline 

 

 

The blue line is the accuracy line for 20 categories. Red line is 
FPR and green line is FNR. 

We can see from the figure above that, the accuracy is about 50% 

while the FPR is low and FNR is high. It implies that the baseline 

kind of more not likely to categorize. 

7.3 Results 
Table 3. The Decision Tree performance on 20 categories 

Category 

No. 

Accuracy FPR FNR Labeled positive 

Figure 2. Performance of baseline. 
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1 0.5810 0.3315 0.5121 4847(out of 

10000) 

2 0.5455 0.5636 0.3678 5573 

3 0.6389 0.1856 0.7836 2935 

4 0.8033 0.0851 0.8425 1473 

5 0.8709 0.0493 0.8784 962 

6 0.8953 0.0306 0.8888 863 

7 0.9269 0.0296 0.6852 664 

8 0.8712 0.0415 0.6887 1349 

9 0.8573 0.0394 0.8775 1233 

10 0.8700 0.0430 0.9148 998 

11 0.8897 0.0345 0.8905 886 

12 0.9279 0.0200 0.8723 611 

13 0.8829 0.0341 0.9102 947 

14 0.8949 0.0268 0.8917 905 

15 0.9518 0.0111 0.9017 417 

16 0.9251 0.0219 0.8844 614 

17 0.9607 0.0097 0.8043 373 

18 0.9223 0.0278 0.8813 584 

19 0.9378 0.0195 0.9336 467 

20 0.9406 0.0198 0.7808 520 

 

 

Table 3 and Figure 3, 4 are the examples of the results we 

collected. 

Table 4. Performance of different method (Category 1) 

Method Accuracy FPR FNR 

Decision Tree/3000 features 0.5734 0.4161 0.4318 

Decision Tree/selected features 0.5810 0.3315 0.5121 

SVM 0.6120 0.3127 0.4680 

Neural Network 0.5757 0.3556 0.4973 

Linear Regression 0.5138 0.4583 0.6353 

KNN 0.4884 0.5357 0.5897 

Baseline 0.4323 0.6456 0.6757 

 

7.4 Analysis & conclusion 
In first table, we can see that the accuracy raise as the difference 

between positive and negative sample number. At the same time, 

FPR decrease and FNR raise. But for all categories, the balanced 

error rate seems more stable. So we think BER can better fit the 
evaluation task. For balanced dataset, we can simply use accuracy 

to evaluate the performance of one classifier. But if there are far 

more positive/negative data than the opposite, only look at 

Figure 3. The Decision Tree performance on 20 

categories 
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Figure 4. The Decision Tree performance on 20 

categories 
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Figure 4. Performance of different methods 

 

. 

 

 



accuracy will cause overestimation. For example, if only 1 percent 

of data is labeled positive, then predict all of them to be all 
negative will get a quite high accuracy. But in fact, this method 

get only 50% balanced error rate. And it cannot help us find 

probably positive sample at all.  

And from the performance between raw feature and selected 
features, performance improves while features are reduced. From 

this point we know that select more feature sometimes will make 

classifier become worse. Then we examine the train error rate, 

find that the 3000 feature dataset has 95% accuracy, and the 
compressed features has 78% accuracy. We think this situation is 

surely overfitting.  And by feature selecting and compressing, we 

can significantly mitigate overfitting. 

 
Among all the method, SVM seems perform best. But at the same 

time, this method is also time-consuming. For example, train a 

decision tree using these data only cost nearly 1 minute. But 

training an SVM needs much more time, nearly half an hour. 
Same issue appear in NN method. From this comparison, we think 

the choice text mining algorithm should also consider the speed. 

Despite of some application really need fast response, low speed 

will at least cause difficulty on parameter tuning and method 
elaboration. 
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