
Text based categorization predictions from book reviews
Fucheng Gao

Department of Computer Science and Engineering
University of California, San Diego

A53095931

fugao@eng.ucsd.edu

Pengfei Chen
Department of Computer Science and Engineering

University of California, San Diego
A53106511

pec028@eng.ucsd.edu

ABSTRACT

Automatically categorization is of great significance nowadays

where massive data flows to us every day, especially for
companies receive and need big data. It is especially important

when there are some data unclassified or unlabeled, how can we

define the categorization is very challenging. What we do is to

categorize a review text into some pre-defined categories based on
its text features. We did some preprocessing and feature

processing to improve the accuracy. And we tried several methods,

either basic or advanced, including Linear Regression, KNN,

Decision Tree, Neural Network and Nonlinear SVM. Then we
compare these methods and analyze the results. Finally we come

up with a conclusion.

Keywords

Data mining, book reviews, neural networks, SVM, decision trees.

1. INTRODUCTION
The goal of our project is to predict the categories for a book

review from the data set of book review data. We came up with

this idea when we recall that when we are doing assignment 1,

when we wanted to extract the categories as a feature, we noticed

that not all book reviews have category classifications. But it’s
common sense that every book should have at least one category.

So we want to predict the categories based on the these data.

We first did some preprocessing to extract features in Section 3.

And then did feature processing to improve the accuracy in
Section 5. We tried several methods, either basic or advanced,

including Linear Regression, KNN, Decision Tree, Neural

Network and Nonlinear SVM as in Section 6. Then we compare

these methods and analyze the results. Finally we come up with a
conclusion in Section 7.

2. DATA SET

2.1 Data set chosen
We reuse the book review dataset in assignment 1, which is a data

set about book reviews. In the process of studying of assignment 1,

when we wanted to extract the categories as a feature, we noticed

that not all book reviews have category classifications. But in

common sense, each book should have its own category. So we

decided to build a data processing system to help users define the

categories of books according to the review texts they’ve written.

Each datum consists of 9 fields, including:

'itemID', 'rating, 'reviewText', 'helpful', 'unixReviewTime',

'category', 'reviewerID', 'reviewTime' and 'summary'.

What we want to do is predict the categories of books based on

the review texts.

In our assignment 2 project, the dataset are lines of data with

category (in train.json.gz, approximately 120k samples).

2.2 Exploratory Analysis
First we count the all the categories and see the distribution. We

can see from the figure 1 that there are many categories, while the
top categories appear very often and the other appear so rarely.

Then we can see from figure 2 about the top 20 categories. The

last category, which is ‘Anthologies’ still has a count of 6,000 out

of the total 120,000 reviews, counting for 5% of the total number.

So this is sufficient for further processing.

3. PREDICTIVE TASK
Our main work is to predict the categories based on the review
text.

3.1 Data pre-processing
Apart from those reviews with no categorization, there are also

some issues about categorization in the reviews.

Figure 2. Distribution of top 20 categories sorted.

.

Figure 1. Distribution of categories sorted.

.

The category field consists of several lists of strings, such as

“books”, “children’s books”, and so on. At first we treat each
string as a category, then merge all of the lists into one category

list. In this process, we delete duplicate string. But after this

process, we found many nonsense categories, such as “books”

(which seems to appear in every sample), “Kindle Store” and
“Kindle eBook” (which usually appear together, classify them

separately seems nonsense).

To find out what’s going on, we visited the amazon.com which

seems to be the data source. And it turns out that the ‘list of
categories’ seems to be the hierarchy categories. So we discard all

categories except the last category in each list. Because this is the

category on the lowest layer. In other words, this categorization is

the most specific one and thus best describes the book. For

example, if there’s a category list like “Books => Education =>

School & Teaching”. Then we will process it into “School &

Teaching”.

What’s more, there are still more than 300 categories, with the last

280 categories less than 5% of the total book reviews. In order to

ensure the accuracy of predictions, we discard these categories.

Table 1. The top 20 categories

Contemporar
y

Literature &
Fiction

Romance
New Adult
& College

Coming of

Age

Romantic

Comedy
Urban Paranormal

Suspense
Women's

Fiction
Erotica

Paranormal

& Urban

Contemporar

y Women

Romantic

Suspense
Military Fantasy

Vampires Series Anthologies
Werewolves
& Shifters

So for various reasons, we first do some pre-processing to the raw

data. The pre-processing includes three parts:

i. Process the category field of each datum as we stated

above to discard all the unnecessary fields.

ii. Compute count for every categories. Discard

categories except for the top 20 categories with most count.

(Table 1)

iii. Discard all samples without a categorization.

3.2 Evaluation model
Given this classification prediction is a multiple classification,

which means that a book can be classified in two different

categories. Thus the evaluation criteria is not something like MSE

(Minimum Square Error) or MAE (Minimum Absolute Error).

We need to both look into the false negative errors and false

positive errors.

In order to evaluate the accuracies of different models we use, we
use four main criteria to evaluate the models. These four criteria

are: FPR (False Positive Rate), FNR (False Negative Rate), BER

(Balanced Error Rate) and ACC (Accuracy).

𝐅𝐏𝐑 = 𝐅𝐚𝐥𝐬𝐞 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 / #𝐥𝐚𝐛𝐞𝐥𝐞𝐝 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞

𝐅𝐍𝐑 = 𝐅𝐚𝐥𝐬𝐞 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬 / #𝐥𝐚𝐛𝐞𝐥𝐞𝐝 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬

𝐁𝐄𝐑 =
𝟏

𝟐
∗ (𝑭𝑷𝑹 + 𝑭𝑵𝑹)

𝐀𝐂𝐂 =
𝐓𝐫𝐮𝐞 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 + 𝐓𝐫𝐮𝐞 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬

#𝐥𝐚𝐛𝐞𝐥𝐞𝐝 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬

After the pre-processing, there are about 120,321 samples. We

divide the data into three parts:

a) Training data set. This includes the datum 1 ~ 70000.

b) Validation data set. This includes the datum 70001 ~

100000.

c) Test data set. This includes the datum 100001 ~ 110000.

3.3 A simple baseline
In order find a standard for later complex models, we start by
define a simple baseline of this prediction.

We start by the idea that some specific ‘functional’ words can

help us categorize. Like what we do in homework 1, if a review

text consists of the word ‘Wizard’ or ‘Witch’, we classify it into
‘Fantasy’ books. We want to define such two words for each

category.

It is realistic to define these words by coming out of nothing, so

we let program to do this thing for us. For each category
separately we find all the average words count within the reviews

of this category and average words count within the reviews not

of this category. Record these two count as 𝑪𝒕 and 𝑪𝒇. We find

two words with 𝒎𝒂𝒙(𝑪𝒕 − 𝑪𝒇), and define these two words as

the ‘representing’ words for this category. This is the idea that if a

word is more likely to appear in such category, and less likely to
be in the text not in such category. Then this word maybe

somehow have some connection with this category.

So when we are about to predict a review’s categories. We check

for each category if the ‘representing’ words of this category is in
the review text.

The performance of the baseline will be discussed in details in

later sections.

3.4 Assessing validity of the predictions
One standard for assessing the validity of our predictions is the
baseline we stated above. We will compare the FPR, FNR and

BER of our prediction to the baseline. Another way is to analyze

the ratio of FPR and FNR, whether a too high FPR or too high

FNR is not acceptable.

4. RELATED WORK
There are many related work on categorization base on text. In [1]

talks about the automated categorization of texts into some

predefined categories. This research to this problem is based on

some advanced machine learning techniques. First a general
inductive process automatically builds a classifier by learning

from a set of preclassified documents, and the characteristics of

the categories. This survey discusses the main approaches to text

categorization using the machine learning methods. They
discussed mainly about the following three problems: document

representation, classifier construction, and classifier evaluation.

In [2], the book first discusses about the Classification and

Regression Trees algorithm. This book also presets some
examples from Richard Olshen's experience working in the

Medical School at UC San Diego, and the method is widely used

over the past 20 years.

In [3], there is one more book talks about classification and
regression trees. But this book stands on the position that fifty

years have passed since the publication of the first regression tree

algorithm. So this book more talks about new techniques that have

added capabilities that far surpass those of the early methods. The
idea is that modern classification trees can partition the data with

linear splits on subsets of variables and fit nearest neighbor,

kernel density, and other models in the partitions. So regression

trees can fit almost every kind of traditional statistical model,
including least-squares, quantile, logistic, Poisson, and

proportional hazards models, as well as models for longitudinal

and multiresponse data. This article surveys the developments and

briefly reviews the key ideas behind some of the major algorithms.

What’s more, in [4] and [5], there are similar data sets that we are

using for categorizations. In [7] and [8], introduces some of the

most advanced methods for categorizations. In [9] discusses a way

to reduce the dimensions in features which we are going to use in
later sections.

5. FEATURES
Text cannot be directly categorized by a classifier. So we need to

find a way to extract feature from each review text, and use the

same format feature for classification.

As we stated before, we use the words in the review text to predict

the categories. Given that there are more than 20,000 different

words, it is not reasonable to taken all these 20k words into

account. So we need to cut down the features before we run our
models.

5.1 Semantic processing
First of all, many words like the pronouns, particles and

prepositions definitely won’t help us make predictions since they

are ‘meaninglessly’ appearing in every sentence. So we use a
stop-words list to list out all the words abandoned. Then we also

do the stemming. For words like ‘logic’, ‘logistics’ that have the

same roots we treat them as the same because they mainly have

the same effect in the sentences.

This reduces the different words number to about 18,000.

5.2 Unigram selection
Commonly our approach is the bag-of-words model, which

defines a fixed length vector of appearance of words in a specific

dictionary. To build this model, we count the times of appearance
for each word.

Since classification of different categories may be affected by

different words, so we decided to select unigram for each category

separately. At that time, for a specific category, we give samples
label {0, 1} which stands for belonging to this category or not.

And for unigrams vector, we have a TF (Term Frequency) feature

of the samples.

By applying semantic processing, we have reduced some of

meaningless words. Then, we need to further decrease the words

number.

By observation, we noticed that many words with very few

appearance are not likely to be meaningful words, mostly are
some random meaningless combination of characters and numbers

(this may be due to the word segmenting progress or misspelling).

And these words may even cause overfitting issue in our classifier.

So we retain the 2000 most frequent ones and throw away the
others, which appear at most 150 times in 120000 review texts.

5.3 Chi-square method
As we said before, we want to select different words for different

categories. For example, appearance of ‘Children’ is a powerful

feature for “Children’s book”, but less effective for “Literature

books”. To find this relationship between feature and category, we
used chi-square method.

Table 2. The top 20 categories

 Belong to

category

Not belong to

category

Word appears A B

Word doesn’t

appear

C D

(For a specific category) For each feature (word), we divide

sample set into 4 parts. (See Table 2 above.)

We define chi-square value as follows:

𝛘𝟐(𝒘𝒐𝒓𝒅, 𝒄𝒂𝒕𝒆𝒈𝒐𝒓𝒚) =
𝑵(𝑨𝑫 − 𝑩𝑪)𝟐

(𝑨 + 𝑪)(𝑨 + 𝑩)(𝑩 + 𝑫)(𝑪 + 𝑫)

Which can be simplified to:

𝛘𝟐(𝒘𝒐𝒓𝒅, 𝒄𝒂𝒕𝒆𝒈𝒐𝒓𝒚) =
(𝑨𝑫 − 𝑩𝑪)𝟐

(𝑨 + 𝑩)(𝑪 + 𝑫)

Since that:

𝑵 = 𝑨 + 𝑩 + 𝑪 + 𝑫

𝑨 + 𝑪, 𝑩 + 𝑫 are same for all words.

By using this method, words owning larger values means they
have stronger relationships with this category (whether negative

or positive). Then we sorted the words by chi-square and choose

the first 100 words as final feature (separately for each category).

5.4 Bigram selection
Although stop-words such as “the”, “not” usually don’t convey

any information. But when they are combined with the next word,

they can convey meaningful information. So we adapt bigram

model to catch these most meaningful bigrams. In this progress,
we first build a dictionary for all bigram start by stop-words. And

then choose 500 most frequent ones. After that, we adapt chi-

square on these bigrams for all categories, and choose 20 most

influential for each category.

5.5 PCA and LDA
Both LDA (Linear Discriminant Analysis) and PCA (Principal

Component Analysis) are the most commonly used

dimensionality reduction techniques in pattern-classification and

machine learning applications. The goal of these methods is to
project a dataset into a lower-dimensional space with good class-

separability in order to avoid overfitting ("curse of

dimensionality") and also reduce computational costs.

In practice, PCA finds the axis with maximum variance for the
whole data set where LDA tries to find the axis for the best class

separability. So in our project, we choose LDA method to

compress the dimension of feature. And to do this step, we use the
LDA function in both scikit-learn and Matlab Toolbox for

Dimensionality Reduction for calculation in python and Matlab.

6. PREDICTION MODEL

6.1 Linear regression
We start by applying the common method, linear regression.

Since linear regression is so familiar we are not going to introduce
the definition and the common things, but state something we do.

6.1.1 Feature Adjust
In order to have better access to these specific data, which is of a

great number of features. While we still use the bag-of-words

model, we tried to get better features as we stated in Section 4. So

after our processing, there are about 2,000 features.

6.1.2 Result Adjust
Since this is a multiple classification. It is not reasonable to assign
the value from 1 to 20 to the categories. So we use a list of 20,

each stands for a particular category. If a review is of a category,

the field is labeled ‘1’, otherwise ‘0’. And the predictions are

floats. So we judge by comparing the prediction of such field with
0.5.

6.2 K-Nearest-Neighbors
K-Nearest-Neighbors (known as KNN) is a useful method for

classifications. The main idea is to find the most k similar nodes

in the training data with the one we are to classify. And classify
by counting which classification these k-neighbors mostly belong

to. In this situation, where each book review can have multiple

categories. So for each category, we decide by if more than half of

the k-neighbors are in such category.

6.2.1 Similarity Definition
Since there are too many features for each review – even after
dimension reduction – there are more than 2,000 features. And

different words should have different weights of effects on

different categories. What’s more, we also should not consider the

length of the review which doesn’t apparently varies from
category to category.

So it is not reasonable to use the similarity measurements like

Euclid Distance or Manhattan Distance and so on. Instead, we use

the cosine similarity based on the tf-idf to measure the similarities
between all pairs of reviews.

6.3 Decision Tree
In some problems, features are nominal data, which has discrete

values. For example, the taste of beer can be sour, like banana,

and so on. We only use one dimension of value to express taste.
And if there are many possible value, use (0, 1) feature to

represent for each one will result in the scale of training data

unreasonably increasing.

In this situation, decision tree is a method worth trying. In our
model, we use the most frequent unigrams combined with some

bigram starting with stop-words. (As we talk about in Section 5)

Then, each feature appear/not appear can be treat nonmetric.

Although in this situation decision tree is not as suitable as former
beer test example, but also worth trying.

6.3.1 CART Algorithm

6.3.1.1 Impurity
If we have one feature, when the feature is 0, the output is always
0, and if the feature is 1, the output is always 1. Then after we

divide sample set by this feature, the samples in each subset

should have same label. In this idealized example, the impurity of
each subset is 0. In the root of decision tree, there are all the

samples. And for each node of decision tree, we divide the

samples in this node into 2 or more subsets according to one

feature and gain lowest impurity of each side.

 In our model, we define impurity as:

 𝒊(𝑵) = 𝑷(𝒄)𝑷(! 𝒄)

This means for any one category (each time we train classifier for

one category), the impurity is product of positive rate and
negative rate in the set.

6.3.1.2 Greedy Algorithm
In each loop, we look at all leaf nodes. For sample sets assign to

each leaf, we try to find feature to divide them into 2 parts, and

maximize
 𝛥𝑖(𝑁) = 𝑖(𝑁) − 𝑃𝐿 𝑖(𝑁𝐿) − (1 − 𝑃𝐿) 𝑖(𝑁𝑅)

The N is original set, the NL NR are subsets, and PL is proportion

of node in NR, 1 - PL is proportion of nodes in NR. And we find

divide with max delta 𝑖(𝑁) among all nodes, adapt it and generate

new tree as initial of next loop.

6.3.1.3 Stop criterion
 The criterion is generated by validation and cross validation. In
all the 120000 samples, I select 80000 as train data, 20000 as

validation data and 20000 as test data. In each loop I train the tree

use train data. And then test the error rate on validation set. Once

one node error rate doesn’t decrease, then the node doesn’t branch
then. When all the leaf nodes stop branch, stop train procedure.

6.3.1.4 Pruning
Usually when tree is grown fully, we will meet overfitting. To

avoid this issue, we adapt cost complexity pruning in our method.

After the tree is fully grown, generate a series of

subtrees{𝑻𝟎, 𝑻𝟏, 𝑻𝟐 … . 𝑻𝒏}, while 𝑻𝒊+𝟏 is always generate from 𝑻𝒊,

and 𝑻𝒏 is the root alone. At step i the tree is created by removing

a subtree from tree i-1 and replacing it with a leaf node with value

chosen as in the tree building algorithm. Define the error rate of

tree T over data set S as err(T,S). And the subtree that minimize

𝒆𝒓𝒓(𝒑𝒓𝒖𝒏𝒆(𝑻, 𝒕), 𝑺) − 𝒆𝒓𝒓(𝑻, 𝑺)

|𝒍𝒆𝒂𝒗𝒆𝒔(𝑻)| − |𝒍𝒆𝒂𝒗𝒆𝒔(𝒑𝒓𝒖𝒏𝒆(𝑻, 𝒕))|

will be chosen. Prune(T,t) defines the tree gotten by pruning the

subtrees t from the tree T.

6.4 Neural Network
Inspired by biological neural networks, artificial neural network is

designed to model nonlinear mapping relationship between input

and output. ANN usually perform as a system of interconnect

nodes (which called “neural”). And in backpropagation neural
network, there usually 3 layers of nodes: input layer, hidden layer

and output layer. Nodes in adjacent layers have connection, while

nodes in the same layer doesn’t connect. Nodes in hidden layer

and output layer receive input from former layer with assigned

weight, and then turn to output value by sigmoid function.

6.4.1 BP Neural Network

6.4.1.1 Nodes
 In our NN model, we select 1000 features from unigram and
bigram in the text. So the dimensions of input layer is 1000. And

commonly we set hidden layer with 2000 nodes.

6.4.1.2 Initial status
We initial the weight matrix between each two layers with random

value [-0.1, 0.1].

6.4.1.3 Normalization
Before training, we normalized the data of tf-idf score

6.4.1.4 Training sample
 We used 80000 samples from the dataset to train our neural

network. The input for each sample is tf-idf score after

normalization. And the output is whether this book belong to each
category (30 dimensions of category in total)

6.4.1.5 BP loop
Select sample 𝒙 = [𝒙𝟏, … , 𝒙𝒏]𝑻 ∈ 𝑹𝒏 and expected output 𝑫 =
[𝒅𝟏, … , 𝒅𝒎]𝑻 ∈ 𝑹𝒎

Calculate output 𝒀 = [𝒚𝟏, … , 𝒚𝒎]𝑻under the input

From output layer, adjust the weight matrix

𝒘𝒊𝒋
𝒍 (𝒕 + 𝟏) = 𝒘𝒊𝒋

𝒍 (𝒕) + 𝜼𝜹𝒋
𝒍𝒘𝒊

𝒍−𝟏, 𝒋 = 𝟏, … , 𝒏𝒍, 𝒊 = 𝟏, … , 𝒏𝒍−𝟏

For the output layer:

𝜹𝒋
𝒍 = 𝒚𝒋(𝟏 − 𝒚𝒋)(𝒅𝒋 − 𝒚𝒋), 𝒋 = 𝟏, … , 𝒎

For the intermedia layer:

𝜹𝒋
𝒍 = 𝒙𝒋

𝒍(𝟏 − 𝒙𝒋
𝒍) ∑ 𝜹𝒌

𝒍+𝟏𝒘𝒋𝒌
𝒍+𝟏(𝒕)

𝒏𝒍+𝟏

𝒌=𝟏

, 𝒋 = 𝟏, … , 𝒏𝒍

Modify weight for all the samples

Re-predict the output of all the samples, and calculate the error
rate. If error rate below the stop criteria (20%), stop BP loop

6.4.1.6 Optimization
In adapting neural network, firstly I didn’t normalize the data.

Then in later calculation, I find that although we use the tf-idf

model, but the difference between features cannot be fully used.

And some words appear more frequently will be more powerful
than less frequently ones. So I normalized the feature. And in this

process I find that only normalize on tf data can achieve the same

result. This finding help me reduce the idf calculate step. And in

ANN, the most parameters are hidden layer scale and BP step
length. Firstly, I only set 500 hidden layer nodes to simplify the

calculation. But I find that the model doesn’t converge. And then I

add the node number from 500 to 1000, 2000. And the step length

I set to be (dy/dx)/(10T). And this model can converge. And I find
this method very tricky, the performance is highly uncertain. And

after the error rate below 20%, the model usually come into

overfitting on validation data. Which let me set the stop line as 20%

6.4.2 Advantage and Shortcoming:
Advantage is that it can find hidden relationship among features.
But shortcoming is Slow. Since it use gradient, it doesn’t promise

for global minimization.

6.5 Nonlinear SVM Classifier
SVM is a supervised learning model which aims to minimize the

wrong prediction number. It is usually used on two type
classification task. In our task, we use SVM to determine whether

the Text is belong to appointed category. The original algorithm

provided on class was a linear classifier. In our idea, the task of

text categorization is a nonlinear problem. So we try nonlinear
SVM to do this work by applying kernel trick.

6.5.1 Dual form:
 For support vector machine, weight is combination of samples:

𝒘 = ∑ 𝜶𝒊𝒚𝒊𝒙𝒊

𝒏

𝒊=𝟏

And our optimize problem can transform to:

𝑳(𝜶) = ∑ 𝜶𝒊𝒚𝒊𝒙𝒊

𝒏

𝒊=𝟏

−
𝟏

𝟐
∑ 𝜶𝒊𝜶𝒊𝒚𝒊𝒚𝒋𝒙𝒊

𝑻𝒙𝒊

𝒊,𝒋

= ∑ 𝜶𝒊

𝒏

𝒊=𝟏

−
𝟏

𝟐
∑ 𝜶𝒊𝜶𝒊𝒚𝒊𝒚𝒋𝒌(𝒙𝒊 𝒙𝒋)

𝒊,𝒋

For this form, k(xi, xj) is called kernel function. In linear SVM, it

is product of x, but in non-linear SVM, we can use other function

replace it.

Gaussian kernel: In machine learning, Gaussian function is

popular kernel function used in SVM classifier.

Ad: Optimal the error rate. Classification is more accurate.

Shortcoming: Time consuming

7. RESULTS & ANALYSIS

7.1 Evaluation Criteria
As we stated in Section 3. In order to evaluate the accuracies of

different models we use, we use four main criteria to evaluate the

models. These four criteria are: FPR (False Positive Rate), FNR

(False Negative Rate), BER (Balanced Error Rate) and ACC
(Accuracy).

𝐅𝐏𝐑 = 𝐅𝐚𝐥𝐬𝐞 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 / #𝐥𝐚𝐛𝐞𝐥𝐞𝐝 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞

𝐅𝐍𝐑 = 𝐅𝐚𝐥𝐬𝐞 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬 / #𝐥𝐚𝐛𝐞𝐥𝐞𝐝 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬

𝐁𝐄𝐑 =
𝟏

𝟐
∗ (𝑭𝑷𝑹 + 𝑭𝑵𝑹)

𝐀𝐂𝐂 =
𝐓𝐫𝐮𝐞 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 + 𝐓𝐫𝐮𝐞 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬

#𝐥𝐚𝐛𝐞𝐥𝐞𝐝 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬

7.2 Baseline

The blue line is the accuracy line for 20 categories. Red line is
FPR and green line is FNR.

We can see from the figure above that, the accuracy is about 50%

while the FPR is low and FNR is high. It implies that the baseline

kind of more not likely to categorize.

7.3 Results
Table 3. The Decision Tree performance on 20 categories

Category

No.

Accuracy FPR FNR Labeled positive

Figure 2. Performance of baseline.

.

1 0.5810 0.3315 0.5121 4847(out of

10000)

2 0.5455 0.5636 0.3678 5573

3 0.6389 0.1856 0.7836 2935

4 0.8033 0.0851 0.8425 1473

5 0.8709 0.0493 0.8784 962

6 0.8953 0.0306 0.8888 863

7 0.9269 0.0296 0.6852 664

8 0.8712 0.0415 0.6887 1349

9 0.8573 0.0394 0.8775 1233

10 0.8700 0.0430 0.9148 998

11 0.8897 0.0345 0.8905 886

12 0.9279 0.0200 0.8723 611

13 0.8829 0.0341 0.9102 947

14 0.8949 0.0268 0.8917 905

15 0.9518 0.0111 0.9017 417

16 0.9251 0.0219 0.8844 614

17 0.9607 0.0097 0.8043 373

18 0.9223 0.0278 0.8813 584

19 0.9378 0.0195 0.9336 467

20 0.9406 0.0198 0.7808 520

Table 3 and Figure 3, 4 are the examples of the results we

collected.

Table 4. Performance of different method (Category 1)

Method Accuracy FPR FNR

Decision Tree/3000 features 0.5734 0.4161 0.4318

Decision Tree/selected features 0.5810 0.3315 0.5121

SVM 0.6120 0.3127 0.4680

Neural Network 0.5757 0.3556 0.4973

Linear Regression 0.5138 0.4583 0.6353

KNN 0.4884 0.5357 0.5897

Baseline 0.4323 0.6456 0.6757

7.4 Analysis & conclusion
In first table, we can see that the accuracy raise as the difference

between positive and negative sample number. At the same time,

FPR decrease and FNR raise. But for all categories, the balanced

error rate seems more stable. So we think BER can better fit the
evaluation task. For balanced dataset, we can simply use accuracy

to evaluate the performance of one classifier. But if there are far

more positive/negative data than the opposite, only look at

Figure 3. The Decision Tree performance on 20

categories

.

Figure 4. The Decision Tree performance on 20

categories

.

Figure 4. Performance of different methods

.

accuracy will cause overestimation. For example, if only 1 percent

of data is labeled positive, then predict all of them to be all
negative will get a quite high accuracy. But in fact, this method

get only 50% balanced error rate. And it cannot help us find

probably positive sample at all.

And from the performance between raw feature and selected
features, performance improves while features are reduced. From

this point we know that select more feature sometimes will make

classifier become worse. Then we examine the train error rate,

find that the 3000 feature dataset has 95% accuracy, and the
compressed features has 78% accuracy. We think this situation is

surely overfitting. And by feature selecting and compressing, we

can significantly mitigate overfitting.

Among all the method, SVM seems perform best. But at the same

time, this method is also time-consuming. For example, train a

decision tree using these data only cost nearly 1 minute. But

training an SVM needs much more time, nearly half an hour.
Same issue appear in NN method. From this comparison, we think

the choice text mining algorithm should also consider the speed.

Despite of some application really need fast response, low speed

will at least cause difficulty on parameter tuning and method
elaboration.

8. REFERENCES
[1] F Sebastiani. 2002. Machine learning in automated text

categorization. ACM computing surveys (CSUR).

[2] Leo Breiman, Jerome H. Friedman, Richard A. O1-shen, and

Charles J. Stone. Classification and Regression Trees.
Chapman & Hall, New York, l993

[3] Loh, Wei‐Yin. "Fifty years of classification and regression

trees." International Statistical Review 82.3 (2014): 329-348.

[4] Reuters-21578 Text Categorization Collection.

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.ht

ml

[5] Tf-idf dataset(Matlab format).
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.htm

l

[6] Chi-square definition.

http://nlp.stanford.edu/IR-book/html/htmledition/feature-
selectionchi2-feature-selection-1.htm

[7] State-of-the-art methods: Random Forest. Wiki:

https://en.wikipedia.org/wiki/Random_forest

[8] Deep learning: http://deeplearning.net/

[9] LDA in 5 steps.

http://sebastianraschka.com/Articles/2014_python_lda.html#l

da-in-5-steps

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://nlp.stanford.edu/IR-book/html/htmledition/feature-selectionchi2-feature-selection-1.htm
http://nlp.stanford.edu/IR-book/html/htmledition/feature-selectionchi2-feature-selection-1.htm
https://en.wikipedia.org/wiki/Random_forest
http://deeplearning.net/
http://sebastianraschka.com/Articles/2014_python_lda.html#lda-in-5-steps
http://sebastianraschka.com/Articles/2014_python_lda.html#lda-in-5-steps

