
San Francisco Crime Classification

Junbo Ke
Computer Science and

Engineering
University of

California,San Diego
juke@eng.ucsd.edu

Xinyue Li
Computer Science and

Engineering
University of

California,San Diego
xil431@eng.ucsd.edu

Jiajia Chen
Computer Science and

Engineering
University of

California,San Diego
jic289@eng.ucsd.edu

ABSTRACT
The task of crime prevention is constrained by police

resources. For the safety of a city, if the police is aware

of what kinds of crimes are mainly going on, and what

their distribution is over the city, they can identify where

to target police resources and help alleviate crimes. In

this paper, given time and location, we predicted the

category of crimes that occurred from 2003 to 2015

in San Francisco’s neighborhoods based on a dataset

derived from SFPD Crime Incident Reporting System.

We investigated classification models including Näıve

Bayes, k -NN, Gradient Tree Boosting and analyze their

pros and cons on this prediction task. Since this is a

competition currently held by Kaggle, we also submit-

ted our results to Kaggle and compared them with the

public leaderboard, ranking nearly top 10% on our best

performance in the end.

Keywords
Crime Classification; Näıve Bayes; k -NN; Gradient Tree

Boosting

1. INTRODUCTION
Our goal is to predict crime category of the past crime

recordings. In Section 2 we introduce the dataset we

used in the experiment. Then we talk about details of

our predictive task in Section 3 and what features we

extracted from the original dataset in Section 4. Some

related work on crime classification is presented in Sec-

tion 5. Section 6 discusses the models we used for the

task and analyze their pros and cons. We employed sev-

eral models like Näıve Bayes, k -NN, and Gradient Tree

Boosting to predict the category of the crimes, and the

performance of the models shows significant differences.

The models are evaluated using multi-class logarithmic

loss. We also submitted our result to Kaggle to see our

models’ performance.

2. DATASET
We used a dataset from Kaggle [1] to build the classi-

fier. This dataset contains incidents derived from SFPD

Crime Incident Reporting system. The data range from

1/1/2003 to 5/13/2015. The training set and test set

rotate every week, meaning week 1,3,5,7... belong to

the test set, and week 2,4,6,8... belong to the training

set. For each row of data, there are 9 columns:

Dates: timestamp of the crime incident

Category: category of the crime incident (only in train.csv).

This is the target variable we are going to predict.

Descript: detailed description of the crime incident

(only in train.csv)

DayOfWeek: the day of the week

PdDistrict: name of the Police Department District

Resolution: how the crime incident was resolved (only

in train.csv)

Address: the approximate street address of the crime

incident

X: Longitude

Y: Latitude

Some interesting findings emerge from over 800,000

records of crimes.

In this dataset, there are 39 types of crimes in to-

tal, among which the top 5 frequent are theft, other

offenses, non-criminal, assault, and drug/narcotic. We

concluded from Figure 1 that the distribution of crimes

satisfies the long-tailed property, meaning that several

most common crime categories make up the majority

of all crimes. Statistically, the top 5 crimes account for

66% of the whole records. So it is reasonable to suggest

allocating more police resources to dealing with these

crimes as they are more likely to occur.

As part of our exploratory analysis, we also looked at

how the occurrences of crimes vary from different police

department districts. From Figure 2 we could figure out



Figure 1: Crime Distribution

that Southern Police Department District handles the

most crimes, almost 4 times more than Richmond Police

Department District.

Figure 2: Crimes by Police Department

Moreover, to explore the dataset in a geometrical

manner, we drew the scatter plot on the map of San

Francisco. In Figure 3 we labeled different crimes with

different colors. It could be inferred from the map that

crimes concentrate most on the northeastern part of the

city, which is the downtown area of San Francisco. This

observation is consistent with our expectation.

Meanwhile, we were interested in whether there is

a correlation between crimes and days of a week. As

shown in Figure 4 (only top 15 crimes are illustrated for

clearity), Friday witnesses the most criminal incidents

and the least take place on Sunday, though the differ-

ence between them is not significant. We noticed that

the proportion of each crime does not change markedly

with days of a week.

Figure 3: Crimes Over The City

Figure 4: Crimes Stacked By Day

Hours of a day tell a better story about when crimes

happen most probably. According to Figure 5, crimes

rarely break out between 3:00 and 6:00, but reach to

their second peak at 12:00, and first peak around 17:00

to 18:00. So when police resources are limited, we would

advise assigning more policing from noon to midnight.

3. PREDICTIVE TASK
Our task is to predict the category of the crimes. We

will evaluate the performance of our models on Kaggle

[2], which measures the prediction error by multi-class

logarithmic loss. Each case is labeled with one true cat-

egory. For each record, we calculated a set of predicted

probabilities (one for every class). The formula is then,

logloss = − 1

N

N∑
i=1

M∑
j=1

yij log(pij),

where N is the number of incidents in the test set, M is



Figure 5: Crime Stacked By Hour

the number of class labels, log is the natural logarithm,

yij is 1 if observation i is in class j and 0 otherwise,

and pij is the predicted probability that observation i

belongs to class j.

We randomly split the whole dataset of known la-

bels into 95% for training and 5% for validation, and

assessed the validity of our models’ predictions by cal-

culating the log loss on the validation set for each model.

Also, we submitted our results to Kaggle’s rating sys-

tem to justify our solutions.

As a baseline, we predicted all crimes as the most

common type of crime, in this case, theft. So we set the

‘theft’ column to 1 and left all the rest columns as 0 for

every record. The baseline got a score of 32.89184 on

the leaderboard.

4. FEATURE SELECTION
In Section 2, we have seen that each record has 9

columns. Generally, we will adopt proper representa-

tions of Dates, DayOfWeek, PdDistrict, X, Y and

Address as our feature set:

Dates: We extracted year, month, and hour from

this field and used their trivial representation as our

features. Day wasn’t included, for it could be reflected

by day of week.

DayOfWeek: At first we represented this column with

numerical value 0 - 6, but such way implied days as lin-

early related. So later, we switched to utilize 7-d binary

vectors. For example, [1 0 0 0 0 0 0] represents Monday

and [0 1 0 0 0 0 0] represents Tuesday, etc.

PdDistrict: Just like how we dealt with DayOfWeek,

we initially represented the 10 police department dis-

tricts with numerical values and then transformed to

10-d vectors.

Address: Inspired by Microsoft Azure[3], we used a

39-d vector to represent each address. Each vector rep-

resents the frequency distribution over 39 crime cate-

gories at the corresponding address. Specially, we used

Laplace Smoothing to avoid zero frequencies. Each ele-

ment (dimension) in a 39-d vector, the plain frequency

value p, is replaced by its logodds value, which is defined

as:

log
p

1− p

Throughout the whole process, we experimented with

3 different combinations of feature sets. They shared

common features year, month, hour, X, Y, and were

different in:

#1 numerical representation of DayOfWeek;

numerical representation of PdDistrict.

(Address field is left out to construct a baseline.)

#2 vectorized representation of DayOfWeek;

vectorized representation of PdDistrict.

#3 vectorized representation of DayOfWeek;

vectorized representation of PdDistrict;

frequency distribution (used in Näıve Bayes) or lo-

godds frequencies (used in all other models) of Ad-

dress over all crime categories.

They will be referred to as feature set #1, #2 and

#3 hereon.

5. RELATED WORK
We used an existing dataset of incidents derived from

SFPD Crime Incident Reporting system. It comes from

SF OpenData, the central clearinghouse for data pub-

lished by the City and County of San Francisco. SF

OpenData also provides datasets of public services in

other categories, ranging from City Infrastructure, City

Management and Ethics, Culture and Recreation, to

Economy and Community, Energy and Environment,

and Public Safety.

There is not much research on crime data mining

yet. [4] studies various crime data mining techniques,

entity extraction, association, prediction, pattern visu-

alization included, and matches them with most suit-

able crime types for analysis, such as traffic violations,

sex crime, theft, fraud, arson, gang/drug offenses, vi-

olent crime, and cybercrime. [5] investigates another

crime dataset acquired from the UCI machine learning

repository website [6] from a different prospective. The

paper basically categorizes all U.S. states into areas of

low, medium, and high crime rates based on twelve so-

cial features, mainly population density, unemployment

rate, median household income, and population under

the poverty threshold. Two algorithms, namely Näıve

Bayes and Decision Trees, are applied to the task and

evaluated by accuracy, precision, recall and F-Measure.

Decision Trees turns out to out perform Näıve Bayes

with a 83.9519% accuracy.



Despite the lack of related literature, this competition

on Kaggle arouses a very heated discussion. Users [7]

in the top tier of the leaderboard mention several useful

and powerful python libraries that they have applied

apart from scikit-learn, including Keras [8], Lasagne

[9], and XGBoost [10]. These libraries make full use of

CPUs, GPUs, parallel computing and distributed com-

puting, thus speed up the training step dramatically.

On top of that, there are also novel ideas regarding

feature engineering. For instance, NicolasCte [7] maps

(X, Y) to a 400×400 grid of San Fransisco’s geograph-

ical map; papadopc [11] introduces a seasonal feature

(spring, summer, fall, winter), and leverages PCA to

reduce the dimension of the feature vector.

Another critical technique to increase accuracy men-

tioned on Kaggle is model ensembling [12]. Ensem-

ble learning uses multiple learning algorithms to obtain

better predictive performance than could be obtained

from any of the constituent learning algorithms [13, 14,

15]. The less correlated the individual classification al-

gorithms are, the better results an averaging ensemble

yields.

6. MODELS
In this prediction task, we employed several models

to complete the classification task and compared the

performance of them.

6.1 Naïve Bayes Classifier
Näıve Bayes Classification algorithm is commonly used

in text classification tasks. The training and test fea-

tures used for Näıve Bayes are usually represented as

counting vectors or TF-IDF vectors, in which numeric

values are always nonnegative. In order to apply Näıve

Bayes model into our prediction task, we transform

the X and Y values to the corresponding absolute val-

ues. However, the Näıve Bayes model assumes that

features are conditionally independent, which may be

wrong with our feature vector because the field PdDis-

trict is related to the coordinate (X,Y) to some extent.

Although suffering from the double counting problem,

this model results in a relatively low logloss value. On

the other hand, the features we deploy do not perfectly

meet the requirement of Näıve Bayes. For example, we

usually use count or frequency vector as feature vector

of Näıve Bayes, but the X and Y values are not appro-

priate to represent either count or frequency.

6.2 Multiclass Support Vector Machines
Classifier

Support Vector Machines (SVMs) are non-probabilistic

supervised learning models used for classification. It

aims at optimizing the misclassification error rather than

the likelihood. While SVM is traditionally a binary clas-

sifier, it can be simply generalized to multiclass classifi-

cation by a one-vs-one scheme, that is, training a binary

predictor for each class. However, the fit time complex-

ity becomes more than quadratic with the number of

samples. As the official document of the scikit-learn [16]

library claims SVMs hard to scale to datasets with more

than a couple of 10,000 samples, our training dataset of

around 800,000 samples is doomed to fail because of the

extremely long fit time.

6.3 k-Nearest Neighbors Classifier
k -Nearest Neighbors algorithm (or k -NN for short)

is a rather simple approach among all machine learn-

ing algorithms. It can be used for both classification

or regression tasks. In k-NN classification, the basic

idea is quite clear and obvious: any unlabeled object

is assigned to the most common class of its k nearest

neighbors (k is a positive, typically small integer). The

neighbors are labeled, in other words, to which classes

that they belong are known in advance. This can be

treated as the training set of the algorithm. Problem

arises when the training data is not in uniform distribu-

tion, e.g. they are dominated by a certain class. Then

new objects tend to be classified into that class due to

the large number of its neighbors in that class. This is

a significant shortcoming of k-NN classification.

In order to find k objects closed to a query point, we

need to define a way to calculate the distance between

each pair of objects. The most commonly used distance

metric for continuous feature variables is Euclidean dis-

tance. However, most features of our feature vector are

discrete variables except X, Y and Address, in which

case Hamming distance can be applied as an alternative.

The scikit-learn library uses minkowski as the default

distance metric. In addition, whether to assign weights
to the contributions of the neighbors also needs taking

into consideration. The weights can be uniform, where

all points in each neighborhood are weighted equally;

or by the inverse of their distance, where closer neigh-

bors of a query point will have a greater influence than

neighbors which are further away. Last and most impor-

tantly, different choices of k usually has a great impact

on the accuracy of the prediction. In general, larger val-

ues of k reduces the overall noise on the classification,

but makes decision boundaries between classes less pre-

cise, and model fitting computationally expensive. So it

is a trade-off problem. [17] suggests that a good starting

point is to set k equal to the square root of the number

of instances.

6.4 Gradient Tree Boosting
Gradient Tree Boosting is a more generalized ensem-



ble model in classification tasks, which builds the model

in a forward stage-wise fashion. The model trains a se-

ries of decision trees, where the successive tree is trained

based on the previous one to minimize the prediction

error rate (defined by a loss function). One of the ad-

vantages of Gradient Boosting Tree is that the scale of

the feature values does not matter, which makes it un-

necessary to normalize features.

We tried to apply the library implementation of Gra-

dient Tree Boosting from scikit-learn. In this imple-

mentation, the loss function is defined as the negative

multinomial log-likelihood loss function. The number

of decision trees is controlled by the model parameter

n estimators. In order to avoid overfitting, we did a

grid search over a range of parameter values by calcu-

lating the logloss value on the validation set. Although

the documentation says a large number of decision trees

usually leads to better results, we find it still suffer from

over-fitting on the dataset we use.

A benefit for employing Gradient Tree Boosting model

is that the output score of each category can be easily

transformed into probabilities. Compared to the previ-

ous models, the complexity of Gradient Tree Boosting

increases significantly. It took a few hours to train the

model over 800,000 records on our laptop.

7. EVALUATION AND RESULTS
All the models described in the previous section were

trained and tested in our prediction task. The following

subsections talk about the results.

7.1 Naïve Bayes
This was the first model we tried because of its sim-

plicity and efficiency. Table 1 demonstartes our results

evaluated by log loss metric.

Table 1: log loss on validation and test set
feature set # validation test

1 2.70299 2.71330

2 2.61473 2.63458

3 2.57262 2.59560

A better way to visualize the prediction result is draw-

ing the confusion matrix on the validation set. Here we

predict the crime category to be the most probable one

calculated by Näıve Bayes model. From Figure 6 we

find that the model predicts most of the crime records

as #16 (‘LARCENY/THEFT’) and #21 (‘OTHER OF-

FENSES’). Considering the distribution shown in figure

1, it is a reasonable result because these two categories

are the two most frequent crimes.

7.2 k-Nearest Neighbors Classifier

Figure 6: confusion matrix

We ran k-NN classifier on feature set #1 and #3

with different values of k and a uniform weight.

From Figure 7, it is obvious that feature set #3 con-

stantly performs better than feature set #1 on same val-

ues of k, which implies that introducing new features of

Address and replacing a single feature vector for Day-

OfWeek and PdDistrict by multi-dimensional vectors

do make a great improvement.

Figure 7: log loss on validation set versus k in

k-NN classifier

Based on the logarithmic losses for each round shown

in Table 2, we can tell that the optimal value of k is

5000 for feature set #1, and 3000 for feature set #3. It

justifies our expectations that:

(1) The empirical rule-of-thumb to select k as the square

root of the number of instances works:



Table 2: logloss on validation set versus k
k feature set #1 feature set #3

100 3.86541897948 3.53869884859

500 2.79168755317 2.5355983395

1000 2.64885877334 2.441789077

2000 2.61490537578 2.41380888142

3000 2.60191517479 2.41161174401

4000 2.59979359758 2.41579106533

5000 2.59807194667 2.42266528866

6000 2.59831262337 2.42888834845

7500 2.59918377092 2.43791392131

Here,
√

N samples ≈
√

800, 000 ≈ 900. From Ta-

ble 2, the log loss is significantly large when k is

rather small, but it doesn’t drop noticeably after

k > 1000.

(2) A larger k doesn’t guarantee smaller errors:

The larger k is, the more smoothing takes place, and

eventually it will end up under-fitting (the output

is constant regardless of the attribute values).

Another interesting finding is that the classifier pro-

duces far worse performance when we attempted to as-

sign inverse distance weighting to the neighbors, e.g.

the log loss with k = 5000 on feature set #1 is 9.58989,

compared to 2.59807 without weighting. We guess the

reason behind this phenomenon is that the concept of

distance in our data set doesn’t have much real contex-

tual meaning.

7.3 Gradient Tree Boosting
Finally we applied Gradient Tree Boosting to com-

plete the prediction task. We directly trained and eval-

uated this model with feature set #3 and got the results

in Figure 8.

Generally, it is always better to employ more deci-

sion trees for higher prediction accuracy (lower log loss

score). However, in our experiment, the best result oc-

curs when we set n estimators to 50, and it does not

turn better as the number of trees increases.

We measured the importance of the features we adopted

with ‘gini importance’ [18] and got the 15 most impor-

tant features as shown in Figure 9.

From Figure 9, hour is the most important feature as

expected. Besides, the logodds value of frequencies are

generally among the top informative features, which jus-

tifies our selection of features. On the other hand, Day-

OfWeek features are among the least important ones,

which is consistent with our analysis on the dataset.

8. CONCLUSION

Figure 8: log loss on validation and test set ver-

sus n estimators

Figure 9: Importance of features

For this prediction task, we started from preprocess-

ing the data set from SFPD Crime Incident Report-

ing system. Then, we attempted to select some helpful

features to represent the attributes of the samples in

a proper manner. Adopting logodds Address turned

out to improve the performance of our models by a lot.

Finally, by training some models with the features we

employed and calculating the probabilities of different

categories of crimes, we completed the whole task. As

presented in the results, Näıve Bayes is not a perfect

model for this task because some of the features do not

represent the count or frequency. Once the number of

neighbors is properly chosen, k -Nearest Neighbors im-

proves the prediction result significantly. Gradient Tree

Boosting turned out to be the best model in our experi-



ment, but it is relatively time consuming. After submit-

ting the best result generated by Gradient Tree Boost-

ing model, we scored 2.39383 and ranked 93 among 878

teams. For improvement of our model, we may extract

more features from Address and temporal columns.

9. REFERENCES
[1] San Francisco Crime Dataset(2015). Available

from: https://www.kaggle.com/c/sf-crime/data

[2] San Francisco Crime Classification

Evaluation(2015). Available from:

https://www.kaggle.com/c/sf-

crime/details/evaluation

[3] Data Transformation / Learning with

Counts(2015). Available from:

https://msdn.microsoft.com/en-

us/library/azure/dn913056.aspx

[4] Chen, Hsinchun, et al. ”Crime data mining: a

general framework and some examples.” Computer

37.4 (2004): 50-56.

[5] Iqbal, Rizwan, et al. ”An experimental study of

classification algorithms for crime prediction.”

Indian Journal of Science and Technology 6.3

(2013): 4219-4225.

[6] UCI Machine Learning Repository (2012).

Available from:

http://archive.ics.uci.edu/ml/datasets.html

[7] Competition forum entry on Kaggle: Any

suggestions to improve the performance? (2015).

Available from: https://www.kaggle.com/c/sf-

crime/forums/t/16348/any-suggestions-to-

improve-the-performance

[8] Keras: Theano-based Deep Learning library

(2015). Available from: http://keras.io

[9] Lasagne: a lightweight library to build and train

neural networks in Theano (2015). Available from:

https://github.com/Lasagne/Lasagne

[10] XGBoost (eXtreme Gradient Boosting): An

optimized general purpose gradient boosting

library (2015). Available from:

https://github.com/dmlc/xgboost

[11] Script on Kaggle: neural nets and address

featurization (2015). Available from:

https://www.kaggle.com/papadopc/sf-

crime/neural-nets-and-address-featurization

[12] Kaggle Ensembling Guide(2015). Available from:

http://mlwave.com/kaggle-ensembling-guide/

[13] Opitz, David, and Richard Maclin. ”Popular

ensemble methods: An empirical study.” Journal

of Artificial Intelligence Research (1999): 169-198.

[14] Polikar, Robi. ”Ensemble based systems in

decision making.” Circuits and Systems Magazine,

IEEE 6.3 (2006): 21-45.

[15] Rokach, Lior. ”Ensemble-based classifiers.”

Artificial Intelligence Review 33.1-2 (2010): 1-39.

[16] Pedregosa, Fabian, et al. ”Scikit-learn: Machine

learning in Python.” The Journal of Machine

Learning Research 12 (2011): 2825-2830.

[17] Duda, Richard O., Peter E. Hart, and David G.

Stork. Pattern classification. John Wiley & Sons,

2012.

[18] Breiman, Leo, et al. Classification and regression

trees. CRC press, 1984.


