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Abstract
This article describes the process of building a recommender sys-
tem for grocery and gourmet food. Based on people’s reviews on
amazon.com, we could predict whether the user may or may not
like the food by learning the user’s taste, the product’s features and
the correlation between the user and the product. Several models
are applied to the predictive task, including Linear Regression, Ba-
sic Latent Factor, Bias-SVD and SVD++. Based on the characteris-
tics of our data, we train these models on the different data sets, and
evaluate their performance in terms of mean squared error (MSE)
on the test set respectively. The results show that linear regression is
a suitable model for inexperienced users (those who have reviewed
only several items), and Latent Factor Model, especially SVD++
model, is most suitable for experienced users(those who have re-
viewed many items).

Keywords recommender system, linear regression, latent factor,
SVD++

1. Introduction
Recommender systems are software tools and techniques provid-
ing suggestions for items to be of use to a user. The suggestions
provided are aimed at supporting users in various decision-making
processes, such as what items to buy, what music to listen, or what
news to read. Food, of course, never fails to be one of the most
popular products that people are interested in. Recommending de-
licious and healthy food to customers can not only help them keep
balance in their lives, but also bring about commercial profits for
retailers. Established in 1995, Amazon has grown to be one of the
world’s most popular online shopping websites. It provides a great
number of user reviews on various products, including all kinds of
foods. Based on that, we will try to find a model which recommends
foods for various kinds of users.

2. Dataset Description and Exploration
2.1 Dataset Description
The dataset we use is provided by Julian McAuley on his website[6].
It contains 143.7 million reviews from Amazon website. We will
use the pre-categorized Grocery and Gourmet Food dataset which
contains 1,297,173 reviews, including 768,450 users and 166,049
different items. Table 1 describes the features of each review:

In addition to the review data, the dataset also provides meta
data about the products, as shown in Table 2.

Before we go further, some explorations are performed in order
to find the characteristics of the data, e.g. some features might be
related to others, the data may contain some patterns. These charac-
teristics would provide us with helpful hints and intuition on build-
ing the recommend system. Thus, we first choose some features

reviewerID ID of the reviewer
asin ID of the product
reviewerName name of the reviewer
helpful helpfulness rating of the review
reviewText text of the review
overall rating of the product
summary summary of the review
unixReviewTime time of the review (unix time)
reviewTime time of the review (raw)

Table 1. Features of reviews

asin ID of the product
title name of the product
price price in US dollars
imUrl url of the product image
related related products
salesRank sales rank information
brand brand name
categories list of categories the product be-

longs to

Table 2. Features of products

which might be related to the users’ rating, and then visualize their
correlations to validate our assumption.

2.2 Original Data Exploration
2.2.1 Description Length and Rating
Figure 1 shows the correlation between the user’s rating and the
length of description of the product. We assumed the products with
longer descriptions should have higher ratings. The size of each
circle in the figure represents the number of products with that
description length. As we can see in the figure, the correlation
between product’s description length and average rating is not
significant, so we will not use this feature in our future prediction
models.

2.2.2 Price and Rating
People tend to give high ratings to the product which is affordable
or with high quality. So we thought people will give higher rating
to the products with lower price. But the results show that people
are willing to give higher ratings to expensive food. In Figure 2,
the size of each circle represents the number of products with that
price. We concluded that the food with higher price have better
quality and people are willing to give them higher rates. So we will
include price in our prediction models.



Figure 1. Description Length and Rating

Figure 2. Price and Rating

2.2.3 Rank and Rating
We expected the food with higher sales rank will get higher ratings.
However, as shown in Figure 3, the sales rank and average rank are
not correlated. So we will also exclude this feature.

2.2.4 Title Length and Rating
The figure 4 also shows no relationship between title length and
average rating. The size of the circle corresponds to the amount of
reviews with that product title length.

2.2.5 Item and Rating
Different products may have very different average rating accord-
ing to its quality. The figure 5 confirms our expectation. The aver-
age rating of different food diverges greatly.

2.2.6 User and Rating
People’s standard of rating differs from each other. In figure 6, we
eliminate the users with only one reviews to reduce the coincidence.
We can tell that although most of users are very generous, some
other users are still very strict about rating. We also guessed that

Figure 3. Sales Rank and Rating

Figure 4. Title Length and Rating

Figure 5. Item and Rating



Figure 6. User and Rating

Figure 7. Unix Time and Average Rating

some users tended to give reviews to the products they were not
satisfied with.

2.2.7 Unix Time and Average Rating
Next thing we would like to know is whether review time matters
in rating. Figure 7 shows the tendency of average rating with time
with the size of each circle representing the number of reviews at
that time. At the beginning, the number of reviews is small and
the average ratings are divergent and decrease. The turning point
occurs around year 2012. Both the number of reviews and average
rating increase. We don’t know the exact reason but we guessed
that Amazon might have a new policy that only allows products
with high quality appear on its website.

2.2.8 Month and Average Rating over ten years
We also want to know if month matters in the prediction of aver-
age rating. Figure 8 shows the trends of average rating along with
months in ten years from 2004 to 2013. We expected people will
give higher rates around holiday such as Christmas and Thanksgiv-
ing but the result did not support our expectation.

Figure 8. Month and Average Rating over ten years

3. Prediction Task
3.1 Task Description
To recommend a product to a specific user, we need to predict the
users evaluation towards this product. Naturally, the rating value
of the product in the review data would be a perfect quantified
representation of the users evaluation about this product. It seems
paradoxical that we are recommending products to users who have
bought them before, since the review would only exist after pur-
chase. However, by evaluating the error between the predicted rat-
ing and the ground truth, we could generalize the model to recom-
mend products to users who have never bought them by predicting
the users rating, given the users id and the products id. Hence, the
predictive task is define as:

r̂(user, item) = ratingpredict

To evaluate the performance of the model, Mean Squared Error
(MSE) is calculated on the test data.

MSE =

∑
t [r̂(user, item)− r(user, item)]2

T

3.2 Data Pre-processing
From section 2 we find that the dataset we will use is extremely
sparse. For instance, there are in total 1,297,173 data points, in
which we find 768,450 distinct users and 166,049 distinct items.
Therefore, each user reviews only 1.69 items on average and each
item receives 7.8 reviews. The reason why each user has so few
reviews on average is that a majority of users review only one item,
which largely decreases the average reviews per user. In order to
make better use of our data and to improve the accuracy, we divide



the data into two parts: the first part is the subset of data points
in which each user has reviewed more than 10 items; the second
part is the subset of data points in which each user has reviewed
less or equal than 10 items. More specifically, the first part consists
of experienced users and the second part consists of inexperienced
users. For different types of users, we will use different models to
do the predictions and also for different models, we will choose
different datasets to train, which will be described in the following
sections in detail.

3.3 Baseline
To better evaluate the model, we set up a baseline which is sim-
ply predicting the user’s average rating. If the user is unseen in the
training data, then the global average rating is used as the predic-
tion. Equation 1 defines the baseline, where Iu defines products
bought by the user, Rui defines the rating value which user u gives
to product i, T is number of training examples.

predictbaseline =

{∑
i∈Iu

Rui

|Iu| if user is seen in training set∑
u,i Rui

T
otherwise

(1)
We calculate MSE of baseline model on the two different parts data
sets described in section 3.2. For the dataset in which each user
reviews more than 10 items, the baseline achieves MSE = 1.097.
For the dataset in which each user reviews no more than 10 items,
the baselien achieves MSE = 1.698.

4. Related Literature
In recommender systems, rating prediction is one of the most im-
portant and challenging problems. The Netix Prize has a big impact
on this topic and brought many interesting solutions. Simon Funk,
one of the participants in this competition, firstly posed a revised
SVD method on his website [1], which attracted researchers’ atten-
tion to the matrix factorization techniques. Different from conven-
tional Singular Value Decomposition, his method used an approxi-
mate way to compute the low-rank approximation of the matrix by
minimizing the squared error loss.

Since then, many other SVD-based models have been created.
A simple one is to add bias terms into the basic matrix factorization
model. It is desribed by winner Yehuda Koren , the winner of Net-
flix Prize in his paper [5]. Koren has also proposed SVD++ model
[3], which considers the implicit user feedback, such as the rating
actions of users or their browsing history on the website. With the
additional implicit information of users, this model improves pre-
diction accuracy to some extent. Furthermore, temporal effects is
also an important information in the rating prediction tasks[2, 4]. It
follows the idea that user’s preference may change over time and
item’s popularity may also change. For example, a kind of food
may become more popular if it is advertied by a pop star.

Some other techniques are also applied to improve accuracy.
Julian McAuley[7] combines latent rating dimensions with latent
review topics, which makes good use of review information to im-
prove the rating prediction. This model is also suitable for new
products and users who could still provide substantial informaition
from limited number of review texts. In another paper[8], he mod-
ifies latent factor model by introducing user experience as a func-
tion of time. Each user can learn individually with a different rate
at which their experience progresses.

Based on the state-of-the-art methods above, we try to choose
appropriate models for our prediction task. The dataset we use
is Grocery andGourmet Food reviews, which is provided by
Julian McAuley on his website[6].

Features Description

price The price of the food (if price is
given)

alsoBought
The number of products which the
users who bought this product also
bought

alsoViewed
The number of products which the
users who bought this product also
viewed

boughtTogether The number of products that are
bought together with this product

Table 3. Features used in Linear Regression Model

5. Model Description
5.1 Linear Regression
The first model we tried is linear regression. The reason is that
whether a user would be fond of a specific kind of food should be
much related to the food itself. Thus the user’s judgement (rating)
should be a function of the food’s features. This naturally leads to
linear regression model.

As discussed in section 2, the lengths of description text and title
text and the sales rank of the product have no correlation with the
rating. So we do not include these features in the linear regression
model. The features we use in are defined in Table 3

Since the data set is not complete, some products’ prices are
missing. We separate the train data into two parts, one of them has
price feature, and the other does not. And we train linear regression
model on the two data set respectively. Our linear regression model
achieves MSE of 1.553, which is better than the baseline.

5.2 Linear Regression with Users’ Bias
The features described in section 4.1 are purely based on the prod-
ucts’ features. We completely ignores the users features when pre-
dicting the user’s rating.

To introduce users’ bias into the model, we add three additional
features.

• userAvgRating
The average rating which the user gives to the products he/she
has bought before. If the user is not seen in the training set, use
the average value of other users. This feature shows the user’s
rating behavior in the history and should be taken into account
when predicting the user’s rating on the current product.

• itemAvgRating
The average rating which the product has received. If the prod-
uct is not seen in the training set, use the average value of other
products. This feature describes how other users evaluate this
product. Since people should have similar judgement on deli-
cious food and unpalatable food, the average rating the product
has received should be correlated with a new user’s rating.

• userReviewCount
The count of the reviews that the user has made. This features
describes the user’s expertise in reviewing food. As the user
purchases and reviews more food, the user’s taste might change.

After training the linear regression model with these three extra
features, the MSE has been reduced to 1.587, which is even worse
than the model without user bias features. We believe this is due
to the fact that the majority of the users in our dataset have only
reviewed one or two items, thus we do not have enough information
about the user’s behavior.



5.3 Latent Factor Model (Basic)
Latent Factor Model was created by Simon Funk, a participant of
Netflix Prize in 2006. Since then, it has been widely used in many
prediction tasks. Briefly speaking, this model tries to find latent
factors for each user and item and it performs by projecting user
features and item features into low-dimensional spaces. A simple
form of this model can be written as:

r̂(u, i) = pTu · qi
where qi is a vector associated with each item i, pu is also a vector
associated with each user u. For a given item i, the elements of qi
measure the extent to which the item possesses those factors; for
a given user u, the elements of pu measure the extent of interest
the user has in items that are high on the corresponding factors.
Therefore, their dot product pTu · qi denotes the overall interest of
the user in characteristics of the item. Besides, we should also add
the regularization terms to the optimization problem as:

min
∑

(u,i)∈Train

[r(u, i)− r̂(u, i)]2 + λ(||pu||2 + ||qi||2)

we can use gradient descent method to train the model and get
update rules as follows:

pu ← pu + α(qi − λpu)

qi ← qi + α(pu − λqi)
where α is the learning rate.

5.4 SVD with Bias Terms (Bias-SVD)
We have also used Bias-SVD (also called Funk-SVD) model. This
model add bias terms βu and βu into the simple Latent Factor
Model above. These bias terms indicate the observed deviations of
user u and item i from the average. For example, the average rating
over all foods is 3.5 (namely µ = 3.5). Furthermore, Cheesecake
is better than an average food, so it receives 0.4 stars above the
average (βCheesecake = 0.4). On the other hand, a user named
Stephen rate 0.3 stars lower than the average(βStephen = −0.3).
Thus, 0.4 and -0.3 reflects the deviations of Cheesecake and
Stephen from the global average 0.35. Therefore, in this model,
a rating is predicted by the rule:

r̂(u, i) = µ+ βu + βi + pTu · qi
To learn the model parameters, we should also minimize the regu-
larized squared error:

min
∑

(u,i)∈Train

[r(u, i)− r̂(u, i)]2+λ(β2
u+β

2
i +||qi||2+||pu||2)

Similarly, we use the gradient descent method to get the update rule
for each parameter:

βu ← βu + α(eui − λbu)

βi ← βi + α(eui − λbi)

pu ← pu + α(eui · qi − λpu)

qi ← qi + α(eui · pu − λqi)
where eui = r(u, i)− r̂(u, i) and α is the learning rate.
Additionally, we can expect better performance by using differ-

ent learing rates to user bias, item bias and the factors. However, in
our model we just use the same learning, in order to make it more
simple and concise.

5.5 SVD with Implicit Feedback (SVD++)
SVD++ model makes use of implicit feedback information, which
refers to any kinds of users’ click, purchase history information

that can assist users’ preference. This is especially helpful for those
users that provided much more implicit feedback than explicit one.
SVD++ method integrates the explicit and implicit user feedback
and was shown to offer accuracy superior to SVD. In this model,
a second set of item factors is added, relating each item i to a
factor vector yi . Those new item factors are used to characterize
users based on the set of items that they rated. The model can be
described as:

r̂(u, i) = µ+ βu + βi + qTi

(
pu +

1√
|N(u)|

∑
j∈N(u)

yi

)
where N(u) is a set of items rated by u. If we compare it to the
previous one on the SVD, we will find that the only difference is the
addition of the 1√

|N(u)|

∑
j∈N(u) yi factor. The way to interpret

this is that it is including the effect of the implicit information as
opposed to pu that only includes the effect of the explicit one. A
user rates an item is in itself an indication of preference. In other
words, chances that the user likes an item he/she has rated are
higher than for a random not-rated item.

To calculate the parameters for this model, we need to minimize
the associated regularized squared error function through gradient
descent method. Looping over all known ratings in the training set,
we update each parameter by the following rules:

βu ← βu + α(eui − λ1bu)

βi ← βi + α(eui − λ1bi)

pu ← pu + α(eui · qi − λ2pu)

qi ← qi + α(eui · (pu +
1√
|N(u)|

∑
j∈N(u)

yi)− λ2qi)

∀j ∈ |Nu|, yj ← yj + α(eui ·
1√
|N(u)|

· qi − λ2yj)

where we use different regularization parameters λ1 and λ2 to bias
terms and factors.

Based on the characteristics of the data, our model only uses the
history items that a user has rated as implicit feedback factors. If
given more information, such as the items a users has clicked or
items a user has searched for, we could add more implicit factors
into our model.

6. Results and Conclusion
In section 3 we mentioned that based on the characteristics of our
data, we will use different sets of data to train different models.
Therefore, there seems to be no sense if we compare the results
from different models. However, we can still make comparisons
within the same type of model and then conclude how to use these
models under different situations.

6.1 Results of Linear Regressing Model
The results of two linear regression models and the baseline model
is shown below.

Models Baseline Linear Model 1 Linear Model 2
MSE 1.698 1.553 1.587

As shown in the results, including user bias in the features is even
worse than the linear model which only use product’s features,
since most of the users review only one or two items. We conclude
that new users are hard to predict, compared to experienced users.
Their rating behaviors seem to differ significantly from the average
rating.



6.2 Results of Latent Factor Model
Based on the idea of latent factors, we have tried three models
to train the data, which are Basic-LFM, Bias-SVD and SVD++
models. The training data we use is a subset of data which consists
of experienced users(those who have more than 10 reviews). For
parameters in these models, we choose α = 0.02 as a general
learning rate, λ = 1.0 as a common regularization parameter and
k = 20 as the dimension for latent factors. we get the best results
of all the models as follows:

Models Baseline Basic-LFM Bias-SVD SVD++
MSE 1.097 4.522 0.908 0.894

Some results are just within my expectations, while others surprise
me a lot. Let’s make a detailed analysis of these results.

Firstly, we need to note that the Baseline result in this model
is different from linear regression model, because we use different
dataset for them.

The first model is a basic latent factor model. It gets the MSE
result of 4.522, which is even worse than baseline method. The
reason may be that this model simply uses two latent factors to
predict the ratings, regardless of either the global average rating or
bias effects of each user and each item. Since the rating matrix is
very sparse, each element of latent vectors can easily be affected by
a single value in the matrix. Therefore, the parameters in this simple
model are not trained very well. When I use a denser matrix in this
model(for example, a matrix consists of users who review more
than 30 items), the MSE drops down to nearly 2.5. So I conclude
from this experiment that Latent Factor Model is very suitable
to predict ratings for experienced users. The reason lies in that
experienced users give us more information about their preferences
as well as their implicit feedback.

The second is Bias-SVD model, which adds the bias terms and
global average into the basic model. This model should be a good
choice for this prediction task and it turns out to be. It improves the
baseline method by 17%, which is a satisfying result. Furthermore,
SVD++ model adds the implicit information into Bias-SVD model
and gets a slight improvement of the result. However, SVD++
model has higher computation complexity than Bias-SVD model,
which is the price for a sightly better result.

6.3 Summary
We can have an overview of these models. In our recommender
system, we use different models to make predictions for different
users. For inexperienced users, they have only reviewed several
items, giving us very little information about their preferences.
So we use linear regression model to predict their ratings and
recommend high rating items to them. For experienced users, we
use Bias-SVD model or SVD++ models to make predictions. In
this way, we can get a comparatively high accuracy for both types
of users.

7. Further Work
Given more time, we can do further improvement on our models in
following ways:

• Choose better parameters for Latent Factor Models
In our latent factor models, we have only tried several values of
parameters, such as regularization parameter λ, learning rate α,
dimension of latent factor k. Choosing a better parameter for
these models could improve accuracy to some extent.

• Add temporal information in Latent Factor Models
Another idea to improve latent factor model is to add time infor-
mation. It is based on the fact that item’s popularity may change

over time and user’s preference or bias may also change. Ac-
cording to our own experience, there is a high chance that this
may happen, because our taste is totally different from it was
ten years ago! It seems to be a good idea to take time informa-
tion into account.

• Using Collaborative Filtering for new inexperienced users
Collaborative Filtering is widely used in real-world recom-
mender systems. It firstly calculates the similarity between
different items(or users), and then recommends to users those
items which are highly similar to what they have purchased.
Since inexperienced users purchased only several items, we
can just recommend similar items to them. It’s an easy and ef-
fective model.

• Combining different models
It is possible that different models are suitable to different
situations. An intuitive idea is to add different weights to those
models and combine them together, which can be described as
r̂ =

∑K
k=1 αkr̂

(k). Similarly, we can choose the appropriate
weights by minimizing MSE.
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