
Prediction of Yelp Star Rating

Kun Luo A53090927

Meng Li A53098939

Shuaiqi Xia A53095589

Zhenjie Lin A53103799

ABSTRACT
Recommendation system is a widely studied topic. One

of the ways to implement a recommendation system is

using a predictor to predict whether a user would be sat-

isfied after receiving specific service. In this assignment,

we implemented a predictor which aims to predict how

many stars a user may give to certain businesses. The

dataset used comes from Kaggle with the contents being

yelp business, user and review data. The dataset is di-

vided into training, validation and testing set. We tried

using different models to study the training data and

generating predictions. The models used in this paper

are support vector machine, latent factor, collaborative

filtering and random forest. The model introduction,

the features used, the training methods and the pre-

diction results are provided in corresponding sections.

Finally, we reached our conclusion by comparing the

performance of all our models.

1. INTRODUCTION
Recommendation system is a kind of information fil-

tering system that seeks to predict the “rating” and

“preference” that a user would give to an item. Rec-

ommendation systems have become extremely common

in recent years, and have been applied in a variety of

applications. For instance, when we login amazon or

bestbuy online, they will show us items we may have

incentive to purchase. A good recommendation system

can significantly enhance the user experience.

Building the system requires a huge amount of in-

formation. One way to gather required information is

to utilize online review. Online reviews of certain busi-

nesses can impact the behavior of customers. Prediction

on how much a user would prefer a business, which can

be interpreted to how many stars would a user give to a

business in his or her review after visiting this business

can be used to recommend businesses to users. Basi-

cally, the mechanism is to recommend businesses that

a customer would give a high rating after visiting.

In this project, we use the information from yelp

(downloaded from Kaggle) to predict the star rating

rated by a user to an unknown item, which is business

in our task.

First of all, we identify our dataset, trying to analyze

the original dataset in order to find the basic statistics,

properties and discover some interesting points which

can inspire our design of our model.

Secondly, predictive task is described including the

training task, prediction task and our baseline model to

beat. Also, we would show how to evaluate the perfor-

mance and find the best model.

Then 4 models are generated including Latent Fac-

tor, user-based Collaborative filtering, Support Vector

Machine and Random Forest. Each value is tuned to

fit our datasets. And we will find the strength and the

weakness of each model.

Next, we will discuss the related work to this task

and the future work.

Finally, we will draw the conclusion.

2. DATASET
The dataset comes from Kaggle competition. A sim-

ilar dataset that has been study is the review dataset

from Amazon. People have tried to use Amazon’s dataset

to predict how much will a customer rate a certain good

that the customer has never purchased. The prediction

result can be used to give each customer some recom-

mendation by recommend those goods that they are

likely to give high rating after buying.

The data are all json files. There are 3 files that are

used in this project, which are data of businesses, data

of users and data of review respectively.

The size of our dataset is large enough to be said

containing general cases rather than specific cases. The

total number of samples are approximately 240,000.

The dataset are separated into 3 disjoint set. We

1

Figure 1: star rating frequency

have 200,000 samples for training set, 20,000 samples

for validation and the left 20,000 samples is used for

testing set. For businesses, the dataset include the fol-

lowing fields:

type type of business

id encryped id of business

name the name of business

neighborhoods neighborhoods of business

full address address including zip code

city the city located in

state the state located in

latitude geographical coordinate latitude

longitude geographical coordinate longitude

stars the rating of this business

review count the number of reviews has

categories categories belonging to

open permanently closed or not

For users, the dataset include the following fields:

type type of user

id encryped id of user

name the name of user

review count the number of reviews

average stars average rating from this user

votes the number of “useful”,

“funny” and “cool”

For the review dataset, the only useful field is “stars”

field. This field is the rating that a user given to a busi-

ness in his or her review. The star rating is an integer

in the range of 1 to 5.

Figure 2: business example

Figure 3: number of reviews in each month

One of the interesting findings that we discovered

from the dataset is that users tend to giving high ratings

in December but the ratings then go down in January

and February. The reason may be that people tend to

be in good mood when they are about to take their

Christmas vacation but their mood go down when they

are about to go back to work.
We also consider that location of business is a very

important feature. The business came from 4 states,

AZ, CA, CO and SC. But except for AZ, the other three

only have one business on their states. So we discard

the idea to use states to show the difference of location.

Next, We came to do statistics on the city they came

from. We found that there are lots of mistakes here,

such as “Phoenix” is misspelled “Phoenix”, “Fountain

Hills” as “Fountain Hls” and so on. After dealing with

these mistakes, there are still almost 61 cities. It is in-

appropriate to use so many features, so we want to use

K-means to cluster these cities into 4 groups according

to their latitude and longitude. After cluster, we have

the following city label:

Label 0:

2

Ahwatukee Anthem Chandler

Coolidge El Mirage Florence

Fountain Hills Gila Bend Goodyear

Morristown Peoria Stanfield

Tonopah Tonto Basin Waddell

Wickenburg Yuma

Label 1:

Buckeye Casa Grande Charleston

Gold Canyon Grand Junction Mesa

Paradise Valley Scottsdale Sun City

Sun City West Sun Lakes

Label 2:

Carefree Cave Creek Fort McDowell

Glendale Goldfield Good Year

Guadalupe Higley Maricopa

North Pinal North Scottsdale Rio Verde

Saguaro Lake San Tan Valley Scottsdale

Tolleson Tortilla Flat

Label 3:

Apache Junction Avondale Gilbert

Glendale Az Laveen Litchfield Park

Phoenix Queen Creek Surprise

Tempe Tucson Wittmann

Youngtown

3. PREDICTIVE TASK
Our target is using the dataset described above to

train several models to predict the rating, which is the

“stars” field in review dataset. Since we are going to

use these models to build a recommendation system,

which recommends businesses to a user that have not

ever visited the recommended businesses, datum other

than the “stars” field in the review dataset cannot be
used. Otherwise, the user must have visited the recom-

mended business in order to have the users review in

the database.

The task can be divided into 2 parts. The first part

is training task and the second part is prediction task.

3.1 Training Task
In the training task, we use part of our data acquired

from Kaggle to train our model. Different models may

use different fields of the dataset. The detail of models

are described in the Model section.

3.2 Prediction Task
As we stated before, our main purpose is to build

a recommendation system. Thus, we are supposed to

predict the potential rating star given by a user to a

item, in this task would be business. If the predicted

star is high, we can recommend the item to the user.

Therefore, we would like to give our prediction based on

the datum in the business dataset, the review dataset

and the user dataset, then we are supposed to try to find

the pattern and the relationship between the datasets

and fitted by the model.

3.3 Baseline
The baseline we used to compare our model with is

a relatively simple method of prediction. If the user we

are to recommend business to appeared in the training

set, we provide the average rating of this user to be

our prediction. If the user does not presented in the

training set, we give a trivial prediction by outputing

the average star rating of all samples.

3.4 Evaluation
Our task is to predict the star rating for a user to-

ward to a business. To evaluate the performance of this

model, we use MAE, MSE and accuracy as criteria.

The accuracy is calculated as:

accuracy =
#{xpredict(rates) = x(rates)|x ∈ Testset}

#{Testset}

Considering the fact that we are predicting a number,

we can use MAE(Mean Absolute Error) and MSE(Mean

Squared Error) as test criteria. Based on common sense,

models that have relatively lower MAE or MSE would

be considered better in performance. Additionally, since

the data to be predicted only have 5 possibilities, namely

1,2,3,4 and 5 stars, this predictive task can be viewed

as a classification task. In this way, we may use the

accuracy, precision and F-measurement to evaluate our

model.

3.5 Validity
The star ratings to be predicted are all integers be-

tween 1 and 5. To make our model generate predictions

that are valid, we have to assure that the predictions p

generated satisfy the following constraint:

p ∈ N ∩ [1, 5]

This can be done by modifying predictions greater

than 5 to 5 and predictions less than 1 to 1 and rounding

the result.

3.6 Features Used and Preprocessing
Different models are allowed to use different features.

Each model has to use features that suit themselves

best. The only constraint is as stated in the predic-

tion task subsection, which is using features other than

3

Figure 4: scatter plot matrix with grouping vari-

able

rating in the review dataset is not allowed.

Since all data are not raw data and are well-formed

json data. No preprocessing are needed. Each model

can extract fields or part of fields that are useful in the

model to do the prediction.

The features from left to right are as below:

• percentage of uppercase letters in a sentence

• percentage of punctuations in a sentence

• average star rating from certain user

• the number of reviews from certain user

• average star rating received by certain business

• the number of reviews received by certain business

Another feature that we applied in our model is geo-

graphic feature. We use three dimensional vector in the

features to indicate the location of different cities. We

assume that geographic features are important roles in

the model, which is proved to be true with our models..

An instance of our representation is as below: if a city

is labeled as ‘0’, we use [0,0,0] as it geographic feature,

if citie are labeled as ‘1’, ‘2’, ‘3’, we use ‘[1,0,0]’, ‘[0,1,0]’

and ‘[0,0,1]’ to indicate them separately.

4. MODELS

Figure 5: MAE on validation set

4.1 Support Vector Machine
The review’s star could only be 1,2,3,4,5. If it is

regarded as labels, the star predictions problem could

be solved as classification problem. SVM is one of the

best suited classifiers for this classification task. SVM

algorithms aims to find the hyperplane between between

points from different classes. I use SVM package from

sklearn.

SVC implement the “one-against-one” approach for

multi- class classification. n class∗(n class−1)
2 classifiers

are constructed and each one trains data from two classes.

The disadvantages of Support Vector Machines is that

SVM is very expensive to train. The compute increase

rapidly as the number of data increase. The QP solver

used by this libsvm is more thanO(nfeatures×n2samples).
We first select the kernels functinos for implementing

SVM. And then choose the penalty parameter C and

parameters for kernel function.

We tried both linear and non-linear SVM. For the

linear part, we choose linear function 〈x, x′〉 as kernel

function. For the non-linear part, we choose e−γ|x−x
′|2

as kernel function. Above form show the performance

on validation set.

MAE Error rate(%)

C linear non-linear linear non-linear

0.001 0.947 0.850 25.66 20.64

0.01 0.932 0.808 22.87 20.49

0.1 0.920 0.804 22.71 20.29

1.0 1.435 0.803 22.88 24.27

10.0 1.701 1.797 26.99 28.54

100.0 1.763 1.803 27.37 37.48

4.2 Latent-factor Model
The latent-factor model is a model that assume some

unknown latent factors are influencing the rating that

a user would give.

In this model, we use the normal latent-factor model

to predict a review’s star. A review contains informa-

4

tion related to two entities, one is the business and the

other is the user. We hereby using a function to sim-

ulate the star rating, which is impacted by 2 separate

factor that served as the parameters of the function. To

be specific:

review star = f(business, user)

To not make the function being a useless abstract

symbol, we do the following assumption:

f(business, user) = α+ βb + βu

where βb describes how much does a business tend

to receive star above the mean, and βu describes how

much does a user tend to give a star rating above the

average. By iteratively performing the gradient descent

procedure, we could calculate the optimized value of α,

βband βu.

In order to validate our result from the train data, we

choose 20,000 reviews to be the validation set. During

the iteration process, we would calculate the MAE of

each iteration and choose the predictor that has the

minimum MAE as the final result.

To compare our model with the baseline, we run an

algorithm on our test set, which has more than 20,000

reviews, to get the performance data of the baseline.

The MAE of baseline is 1.082, and the MSE is 1.744.

We then apply our predictor using the optimized α,

βb and βu on the test set. The MAE is 0.8717 is and the

MSE is 1.255, which performs about 19.4% better than

the baseline. But we are not satisfied by this model,

for the reason that the star rating is in range 1 to 5,

which the MAE of 0.87 seems still relatively large for

this range with a span of only 5. Hence, we continue

to try other models to see if any model can present
performance better than this model.

4.3 Collaborative Filtering
Except for latent-factor models, we also implemented

a predictor using collaborative filtering to predict the

stars a user may rank to a business. Generally, there are

two kinds of filtering methods of this technology, user-

based and item-based, the first thing we have to do is

to determine which one we want to implement. Then,

some problems arose during the practice, we have to

come up some idea to enhance the performance of our

model.

There are 2 possible CF(Collaborative Filtering) model,

namely

• User-based CF: Find “similar users” and use their

information to do the prediction.

• Item-based CF: Find “similar items” and use their

information to do the prediction.

When we tried to train the two CF models, there are

two major problems could lead to the collapse of our

model, “sparse” and “cold start”.

For the first problem, “sparse”, our dataset originally

contains 11536 businesses and on average each user re-

views 38.858729 business, thus other than it will be hard

to get the user-item matrix due to our laptop properties,

if we truly get the matrix we want, the matrix will be

too sparse to give us enough information of predicting.

For the second problem, “cold start” , our test set

contains the businesses which not appear at training

set.

Fortunately, the dataset includes the feature of “cat-

egories” which refers to “tagging system”, could become

a solution of our task. To simplify our task, we nar-

row our task to“Restaurants”which contains 4505 busi-

nesses in our original dataset and include 111116 re-

views. “Restaurants” also have some sub-categories in-

cluding Chinese, America(Tradition), or “Pizza”, “Sea

Food” etc. Then, we try to use the categories to replace

the businesses and use the average-rating of a user to

one particular categories as our user information.

Now that we use the businesses’ categories replacing

the original businesses, we choose user-base collabora-

tive filtering to be our basic model.

The first we are supposed to do is to find different

users rating information. In this task, we implement

pandas.DataFrame and collections.defaultdict to save

our user information.

Next we have to find similar users. Common methods

to determine similarity are as below:

Jaccard Similarity:

|A ∩B|
|A ∪B|

The Jaccard Similarity measures refers to how many

items do userA and userB review together

Pearson Correlation Score:

Sim(u, v) =

∑
i∈Iu∩Iv (Ru,i − R̄u)(Rv,i − R̄v)√∑

i∈Iu∩Iv (Ru,i − R̄u)2
∑
i∈Iu∩Iv (Rv,i − R̄v)2

Pearson Correlation Score return the fitting level of two

group of data.

We will find the n nearest users who rates the given

business category for a user based on the similarity and

determine the rating stars by average rating stars of this

n nearest users rating towards this business category.

The parameter n should be determined by cross val-

idation. We find when n = [3, 6], we will find the best

performance.

5

In this model, we have 90000 reviews of restaurants

for training and validation and 21,116 reviews for test-

ing. By running the baseline on the test set, we can

have the performance of baseline. The MAE is 1. 077,

and the MSE is 1. 898.

The first sub model to evaluate is user-based CF

without categories. We train the model for 3 days and

the MSE is 3.596 and MAE is 2.932. Which is not an

improvement of baseline.

The second sub model to evaluate is user-based CF

with Pearson. We train the model for 3 hours and the

MAE is 0.798 and MSE is 0.999 and n=5.

For the third model, user-based CF with Jaccard, the

MAE is 0.876 and the MSE is 1.363 where n = 5.

From the above testing, we found that Pearson is

better than jacccard because it contains the information

of rating habit of given business category. For instance,

some user love Chinese food and tend to rate 5 star

to Chinese restaurant and if we implement pearson, we

would get the nearest users who intend to rate high on

Chinese restaurant.

4.4 Random Forest
As from the above results, the latent-factor model

and collaborative filtering model already outperformed

the baseline, but still not satisfying, which makes we

train this model of random forest on the dataset.

Random forests is a notion of the general technique

of random decision forests that are an ensemble learn-

ing method for classification, regression and other tasks,

that operate by constructing a multitude of decision

trees at training time and outputting the class that is

the mode of the classes (classification) or mean predic-

tion (regression) of the individual trees. Random deci-

sion forests correct for decision trees’ habit of overfitting

to their training set.

In particular, trees that are grown very deep tend to

learn highly irregular patterns: they overfit their train-

ing sets, because they have low bias, but very high vari-

ance. Random forests are a way of averaging multiple

deep decision trees, trained on different parts of the

same training set, with the goal of reducing the vari-

ance. This comes at the expense of a small increase in

the bias and some loss of interpretability, but generally

greatly boosts the performance of the final model.

Above all, each tree in the forest could classify the

data by one feature, and he could be viewed as the

expert of this feature. Even one tree is not very useful

for the final result, if there are lots of trees, we are likely

to have many expert of different fields and they could

judge the dataset together to vote for the final results.

This is the magic of random forest.

The core of the random forest model is the selection

of a random subset of features. Besides, the random

forest model is an unsupervised learning method, which

has close connection with the decision tree learning.

The key to the success of this model is to choose the

right and proper feature.

In our model, we choose to use 4 features at first,

which are

• user’s average star

• user’s review count

• business’s review count

• business’s average star

We train this model by iteration of 100 times. And

the MSE on validation set is 0.907, and MAE is 0.487.

This is really good compared with the former one.

After trying the previous 4 features, we add another

feature, which is geography information, and eliminate

user’s review count. By finishing training and perform-

ing on setting, we found that the MSE is 0.891 and MAE

is 0.457, which improved 1.4% compared with the for-

mer 4-feature model. We add the feature according to

this feature could enhance the performance of our model

and eliminate the feature that will cause no worse effect

after deleting it.

The MAE and MSE in each iteration are as below:

estimator count MAE MSE Error rate(%)

1 0.972 1.709 59.78

10 0.897 1.423 59.79

100 0.458 0.891 29.86

200 0.455 0.885 29.90

5. LITERATURE
Our dataset is downloaded from Kaggle’s previous

competition, which is called “Yelp Recruiting Competi-

tion”. This dataset is meant to predict a user’s opinion

for a specific business, which is evaluated by the filed

called “star”. This yelp’s dataset mainly contains three

parts, which are business’s information, user’s informa-

tion and review’s information. We mainly do training

on the review’s part and combined the business’s fea-

tures and the user’s features together to predict the

“star”. This dataset is a little similar to assignment

one’s dataset, which contains the rating, review text,

userID, itemID. However, this yelp’s dataset provides

more information like the location of a business. We

could make use of this kind of data to find some inter-

esting and useful information behind them.

The problem of predicting rating in a typical recom-

mendation system has been studied broadly. One of the

common methods used is neural network,i.e. autoen-

coder, combine with restrict Boltzman machine. Due

6

to the large computational power needed to implement

a large scale neural network to do the prediction task,

we are unable to compare our model with the model

using neural network.

Also Matrix Factorization (’Matrix factorization tech-

niques for recommender systems’) could be one of solu-

tion of recommendation system. Actually, the so-called

latent factor model in our project is a simple version

of the Matrix Factorization model. With the combine

of date information we may enhance the performance

of our model. But due to the restrict of computational

power we decide not to consider it as a future work.

Another state-of-the-art methodology to study this

kind of problem might be the using the random forests,

which we also used in our model. Due to the prediction

result is influenced by several features, both visible and

invisible. Using linear regression and other methods like

SVM could not be enough to judge and classify the data.

Every tree in the random forest just like an expert of a

certain field, and they vote together to get the predicted

results.

After gathering the information online, we figure out

that main problem of recommendation are cold start

and sparse matrix, then we find this problem could be

partly solved by so-called ůtag system’ thus we would

like to use ‘categories’ in our CF model as an enhance-

ment.

Compared with other conclusions of some research,

their final results might be as good as us. We thought

about this reason might be the chosen of the dataset.

Our dataset is carefully chosen from the data of yelp,

which ensure that we could learn something from the

train set and the information needed in the test set have

be trained. However, other research’s dataset might not

be as optimal as ours. This might be the main reason

why our prediction results differ a little.

6. CONCLUSION
After training from train set and tuning the param-

eters from validation set, the following form is the per-

formance on test set.
MAE Error rate(%)

SVM 0.936 22.86

latent-factor 1.32 42.1

random forest 0.461 31.3

The baseline on the test set is the same as the pre-

vious model. The MAE is 1.08, and the MSE is 1.744.

Comparing our model with the baseline, it improves the

performance by 77.21%.

In our project, we mainly focus on building a particu-

lar kind of recommendation system to predict the rating

stars given by a customer to a item. We download our

dataset from Kaggle provided by Yelp.

For our prediction, we propose 4 different model-

Support Vector Machine , Latent Factor Model, user-

based Collaborative Filtering and Random Forest. Af-

ter testing the performance of each model, we determine

that Random Forest should be our optimal solution on

this task for the reason that it improves that the per-

formance of baseline by 77.21% being the best out of 4

models.

In our Random Forest model, we original consider

6 feature, including user’s average stars, user’s review

counts, business review counts, business review stars,

geography information and the capital words in review

text.

We use greedy algorithm to determine the feature.

If we add one feature that will lead to a better per-

formance then the feature will be a good one. If we

eliminate a feature which will not result in worse per-

formance then will delete the feature.

Then after adding the geography information we en-

hance our performance of model. Thus geography is

another good feature. But we do not observe the im-

provement after adding the capital words in review text.

Therefore, we do not need this feature.

The parameters of our Random Forest are n estima-

tors:The number of trees in the forest;max depth:The

maximum depth of the tree; warm start: whether reuse

the solution of the previous call to fit and add more

estimators to the ensemble.

To the failure of SVM, the reason is that SVM is

more suitable for data in high dimensions and also due

to our property of MAC, we could only use a small part

of data to train our model.

As for the latent factor model, we may enhance the

performance by adding the time information in the fu-

ture.

As for the failure of CF, cold start and sparse ma-
trix, we think the tag system of dataset is not strong

enough. Our future work should be, split the categories

in different level, i.e. food type: pizza, dumplings and

the restaurant, Chinese, American(traditional) etc.

Our success in RF based on that 1. is a relatively

fast algorithm 2. it can help to evaluate the importance

of feature.

7

