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1. INTRODUCTION
The visionary Steve Jobs said, “A lot of times, people

don’t know what they want until you show it to them.” A
powerful recommender system not only shows people simi-
lar items, but also helps them discover what they might like,
and items that complement what they already purchased. In
this paper, we attempt to instill a sense of “intention” and
“style” into our recommender system, i.e., we aim to rec-
ommend items that are visually complementary with those
already consumed. By identifying items that are visually
coherent with a query item/image, our method facilitates
exploration of the long tail items, whose existence users may
be even unaware of.

This task is formulated only recently by Julian et al. [1],
with the input being millions of item pairs that are fre-
quently viewed/bought together, entailing noisy style coher-
ence. In the same work, the authors proposed a Mahalanobis-
based transform to discriminate a given pair to be sharing
a same style or not. Despite its success, we experimentally
found that it’s only able to recommend items on the mar-
gin of different clusters, which leads to limited coverage of
the items to be recommended. Another limitation is it to-
tally ignores the existence of taxonomy information that is
ubiquitous in many datasets like Amazon the authors exper-
imented with. In this report, we propose two novel meth-
ods that make use of the hierarchical category metadata to
overcome the limitations identified above. The main contri-
butions are listed as following.

• We focus more on learning coherent visual styles that
go cross different subcategories; that is we aim to learn
(for instance) what kind of shoes go with a pair of
pants. Therefore unlike [1], we only care about item
pairs that connect different subcategories.

• We propose two efficient methods to smoothly incor-
porate category information, which are (1) suitable to
extract various style dimensions from different subcat-
egories, and (2) helpful to mitigate the limited coverage
problem suffered by existing work.

• Experiments on large real-world dataset demonstrate
that our methods are able to achieve state-of-the-art
prediction accuracy, while significantly reduce the train-
ing time by more than 5×. Due to tight time con-
straints and the large size of the dataset we experi-
mented with, we were unable to fine-tune the hyperpa-
rameters of our models, but we do believe even larger
improvements can be achieved if given enough time.

In the e-commerce world we are currently living in, al-
most all major companies are using recommender systems
to recommend items that are of potential interests to their
customers. The saving in computation and improvement in
prediction accuracy translate directly to millions of dollars
in sales.

2. RELATED WORKS
Applying image search and image similarity comparison

has been explored both in academia and industry. Google
shopping and Like.com are some well-known applications
of image-based fashion recommendation applications. How-
ever, the limitation of such applications is that they fail to
capture human notion of “je ne sai quoi”, a consistent style
shared among objects from very different categories.

Other visual based recommendation system utilizes a large
amount of text, metadata and human-curated data. Linaza,
Garcia(2013) [3] described an image-based travel recommen-
dation system that allows travelers to specify their interests
through a set of images, from which the system infers their
profile. Jing, Liu and Kislyuk (2015) [4] demonstrated that
content recommendation powered by visual search improves
user engagement. Bell and Bala (2015) [5] trained a convolu-
tional neural network to identify products in scene and find
stylistically similar products. Simo-Serra et al. [6] predict
the fashionability of a person in a photograph and suggest
subtle improvements. Jagadeesh et al. [7] use a street fash-
ion dataset with detailed annotations to identify accessories
whose style is consistent with a picture. Another method
was proposed by Kalantidis, Kennedy and Li [8], which ac-
cepts a query image and uses segmentation to detect clothing
classes before retrieving visually similar products from each
of the detected classes. Among these, McAuley et al. [1]
is closest to what we propose here; it uses visual features
extracted from convolutional neural networks and learn a
visual similarity metric to identify substitute and comple-
mentary items to a query image. What’s worth reminding
ourselves is that any recommender system that relies on user
explicit input can be attacked or vandalized, such as shilling
attacks and deliberate mistagging. Our approach has the
advantage of doing away with annotations.

We seek to measure visual distance among objects from
different categories, thus helping to fulfill recommender sys-
tem’s essential purpose, to discover things we didn’t know
before. The novelty factor is a very important aspect of the
recommendation problem. It has been acknowledged that
providing obvious recommendations can decrease user satis-
faction. We address the problem of finding the right trade-



Figure 1: A t-SNE [2] visualization of the embedded ‘style space’ learned on Amazon Men’s Clothing by the
model proposed by McAuley et al. [1]. One limitation of this method is it tends to learn clusters of items. If
we were to recommend outfits that are consistent with a given query image, there is an unwanted tendency
to recommend those items that are on the margins of different clusters.

off between finding novelty items and keeping high quality
recommendations.

3. BACKGROUND
The field of deep learning using Convolutional Neural Net-

works (CNNs) has made amazing progress over the last
decade in recognizing objects across wide baselines and wide
changes in appearance. CNNs consist of layers of small com-
putational units that process visual information hierarchi-
cally in a feed-forward manner. Each layer of units extracts
a certain level of features from the input image.

McAuley et al. [1] proposed to make use of a pre-trained
CNN to extract a F -dimensional feature vector for each item
in the dataset. Afterwards, they used a low-rank approxi-
mation of the Mahalanobis transform to embed the image
space to a ‘style space’ where items with similar styles are
projected to nearby locations. This approach yields good
accuracy in predicting related items. However, we experi-
mentally observed two major shortcomings:

1. Figure 1 illustrates the uncovered 223-D visual space
by [1]1, further embedded to 2-D by t-SNE [2] for vi-
sualization purpose. Note that this method projects
different categories to be clusters in the ‘style space’.
This leads to a few unexpected results: (1) We want
to recommend outfits, which essentially requires us to
explore different categories for a given query image.
However, [1] will only able to recommend items on the
margin of different clusters/categories. (2) Items to

1Trained in our Experiment Section as baseline.

the far end or lie in the middle of each cluster are mis-
takenly assumed to be “not consistent with all other
types of items”.

2. [1] is using only one embedding matrix, which is as-
sumed to be universally applicable to every item across
all subcategories. However, this assumption is ques-
tionable. For example, the definition of causality of
pants and sweater is different: a casual pair of pants
may have many pockets while a casual sweater may
have a hood. Therefore, using a single embedding ma-
trix is limited by its expressive power by being only
able to uncover characteristics that are shared by all
subcategories.

4. OUR APPROACHES
To compensate the above shortcomings of using a single

embedding matrix, we propose two novel methods that take
category information into consideration: Category-aware Em-
bedding (CAE) and Sparse Hierarchical Embedding (SHE).
CAE utilize category information by assign an embedding
matrix for each of the categories, and SHE reduces the num-
ber of parameter to train by sharing them on a hierarchy
basis. We compare CAE and SHE with the baseline [1].

4.1 Category-aware Embedding
This first method is Category-aware Embedding (CAE).

CAE is relatively straightforward based on the observation
that category information should affect embedding matrix,
therefore it assigns a unique embedding matrix for each leaf



(i.e., the finest subcategory) on the category tree. It is ex-
pected that CAE will improve prediction accuracy, however
it will also limit the number of embedding dimensions con-
sidering training efficiency and the number of parameters we
can afford.

Embedding matrix (or transform matrix) U projects items
into the style space such that items with similar style are
mapped to nearby locations. More specifically, each row of
U extracts one characteristic (attached to a dimension of
the style space) from the F -dimensional CNN feature fi of
item i. The baseline [1] projects i from the feature space to
the following point si in the style space:

si = Ufi. (1)

Considering our task aiming to learn coherent styles from
different categories, a single embedding matrix is limited to
extract the same characteristic from different subcategories.
For example, imagine that we are extracting a characteristic
(dimension) that corresponds to the notion of ‘casual’ across
two subcategories: shoes and shirts. Since shoes that are
colorful are more casual than those with a single color, we
would require a vector in U .

Such intuition leads us to the idea of representing different
categories with different transform matrices. To implement
such idea, we choose a certain layer of subcategories on the
category tree, assign each with a transform matrix Uk. That
is, we use the following equation to map from CNN feature
space to the style space:

si = Ukfi, where item i belongs to category k (2)

We call such scheme Category-aware Embedding (CAE).

4.2 Sparse Hierarchical Embedding
CAE improves accuracy by introducing the idea of assign-

ing a transform matrix for each of the subcategories, at the
cost of more parameters and therefore slows down the train-
ing process. Because for n leaf subcategories, there are n ·F
parameters to learn, where F is number of dimension of CNN
feature space. To mitigate this problem, we propose another
model — Sparse Hierarchical Embedding (SHE) which ex-
ploits the hierarchical structure of the category tree.

Figure 2 illustrates the basic idea of SHE. In this instance,
we allocate the dimensions in the hierarchical tree using a
4-3-2-1 distribution of rows in the embedding matrix. For
example, for a “Walking Shoe” subcategory, its transform
matrix consists four rows from “Men” (i.e., the root node),
three rows from “Shoes” (i.e., grandfather node), two rows
from “athletic” (i.e., father node) and one row from itself.
Note that in this way each subcategory is attached with a
‘collective’ embedding matrix (with 4+3+2+1 = 10 dimen-
sions). Different subcategories are sharing much ‘embedding
vectors’ from their common ancestor nodes.

Briefly speaking, SHE aims to share the embedding vec-
tors across the embedding matrices of different subcategories
(leaves). This enables us to afford more embedding dimen-
sions and fully make used of the hierarchical structure. By
sharing the embedding vectors that are attached to the com-
mon ancestors, it significantly reduces the number of re-
quired parameters and largely improves training efficiency.

Importantly, it is worth pointing out that SHE is ex-
tremely expressive. When the dimension allocation is K :
0 : · · · , SHE can reduce to baseline with K embedding di-
mensions. And when the allocation is 0 : 0 : · · · : K : 0, SHE
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Figure 2: Illustration of the 4-3-2-1 allocation (i.e.,
ten embedding dimensions) of SHE on a 4-layer
category tree. Each bar represents a row in the
‘collective’ embedding matrix associated with the
leaf node. Items from different subcategories are
efficiently sharing the same embedding vectors at-
tached to their common ancestors.

can reduces to CAE with K dimensions as well. This flexi-
bility gives us more opportunity to exploit the hierarchical
structure and can be extremely helpful to deal with issues
like sparsity, unbalanced training pair distribution, and so
forth.

4.3 Training the Models
As with the training procedure in [1], we use logistic re-

gression to model the log-likelihood of our training corpus,
consisted of both positive and negative pairs. Due to lim-
ited space and the similarity between our training procedure
and that of the baseline, interested readers can read [1] for
more details. We use L2-norm regularization of all param-
eters to avoid over-fitting. Regularization hyperparameters
are tuned with grid search to be described later in the Ex-
periment section.

5. EXPERIMENTS
We implement all models with C++ and run all our ex-

periments on a desktop machine with Intel Core i7-4900MQ
processor and 24 GB main memory. In this section, first we
introduce the dataset we experimented with by demonstrat-
ing basic statistics, then we describe the experiment setting
and baselines before we show and analyze our experimental
results.

5.1 Dataset Statistics
Due to time constraints, we focus on a subcategory —

Men Clothing — of the Amazon Clothing & Accessories
dataset introduced by Julian et al. [1]. In order to make
use of the hierarchical structure of this subtree, we further
go down three layers, which gives us in total 163 categories
(i.e., leaves in the subtree) and 785,419 training pairs after
we dropped those pairs connecting items from a same sub-
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Figure 3: Number of items in each subcategory.

Figure 4: Number of training pairs connecting each
subcategory pair, demonstrated with a heat map.
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Figure 5: Degree distribution of all items in our Men
Clothing dataset (log-log plot).

category. Note that this subset we use is still large enough
to be representative as there are still more than 1.5 millions
of pairs (positive + negative) for our experiment. Following
[1], we use the CNN features of each item extracted from a
pre-trained CNN as fi.

Figure 3 shows the number of items in each of the 163
categories we have, each of which is indexed by a category
ID. As we can see from this figure, the popularity of cate-
gories are not uniformly distributed. With this information
in mind, we can’t afford two many parameters for each sub-
category due to the existence of sparse subcategories.

All our item pairs are connecting different subcategories.
It’s helpful to demonstrate how such pairs are distributed
over different subcategory pairs. Figure 4 uses a heat map
to show such distribution. From the figure it can be seen
that some subcategory pairs are more heavily connected
than others. This drives us to come up with a baseline that
simply use this statistics. In fact, the authors of [1] already
included such a baseline in their paper and demonstrated
that it can’t outperform the Mahalanobis transform-based
method which we use as the main baseline in this report.

Due to the popularity differences between different items,
some items may have more links than others. Figure 5
demonstrates the degree distribution of different items with
a log-log plot. As we can see from this figure, it approxi-
mately conforms to the Power-law distribution.

5.2 Implementation Details
In our experiment, we use the ‘also-bought’ metadata pro-

vided by Amazon as our training data. It entails noisy style
compatibility of item pairs and are statistically large enough
to be appropriate for learning the notion of coherent styles.
As introduced earlier, we only keep those pairs that are con-
necting different subcategories on the deepest layer of the
category tree. In our case, we limited the height of the cat-
egory tree to be four (including the root node).

5.2.1 Sample negative pairs
It requires a set of negative pairs with equal size to the

positive pairs to train all models. We sample the negative
set strategically, maintaining its degree distribution to be
the same to that of the positive set.

5.2.2 Comparison Methods
We mainly compare with the most related work with ours,

which is also current state-of-the-art method to perform the
same task.

• Baseline: Proposed by McAuley et al. [1], this method
uses a single embedding matrix to learn the style space.
It’s state-of-the-art model for learning visually coher-
ent styles.

• CAE: This is the first method proposed by this re-
port, which learns a unique embedding matrix for each
subcategory. Since there are too many leaves on the
fourth layer, we finally associated a embedding matrix
to each subcategory on the third layer.

• SHE: This is the second method proposed by this re-
port, which fully exploits the hierarchical structure of
the category tree. It’s so flexible as to be able to asso-
ciate different number of dimensions to different layers.



Baseline (223-d) CAE (8-d) SHE (10-d) CAE Improvement SHE Improvement
Error Rate 7.732% 7.4062% 8.4261% 4.40% -8.23%

Time Consumption 61.57 hrs 10.58 hrs 4.97 hrs 581.94% 1238.83%

Table 1: Comparison between different methods under the same total number of parameters. Baseline
benefits from using a much higher dimensional style space (223-d), while CAE and SHE only use around 10
dimensions.

Baseline (10-d) SHE (10-d) SHE Improvement
Error Rate 13.06% 8.42% 55.10%

Table 2: Comparison between baseline and SHE un-
der the same number of embedding dimensions (10-
d).

5.2.3 Experiment Setting
To make fair comparisons between different models, we

mainly compare under the same total number of parameters.
For SHE, we allocate the embedding dimension distribution
over different levels by 4-3-2-1 in the hierarchical tree, as
shown by Figure 2. This yields 10 embedding dimensions in
total. This also introduces 223 embedding vectors in total,
which sets the standard for our comparison.

For CAE, we have 27 subcategories in total on the third
layer, therefore we use 8 embedding dimensions for each sub-
category, which gives us approximate 223 embedding vectors
(i.e., 27× 8 = 216 vectors).

We get our training/validation/test subsets by using a
80/10/10 split of the full dataset. Regularization hyperpa-
rameters for all models are tuned with grid search to perform
the best on the validation set, and in all cases we report the
corresponding performance on the test set. All our experi-
ments use the same training procedure with [1], i.e., we use
the library L-BFGS to learn all our parameters simultane-
ously.

5.3 Experimental Results
Table 1 demonstrates experimental results we got for the

experiment setting described earlier. From the table we can
see that our methods are able to achieve competitive or bet-
ter accuracy at a much lower training cost.

More precisely, CAE significantly improved the error rate
by 4.40%, with even less number of parameters (8×27 = 216
vs. 223 embedding vectors). Meanwhile, it consumes much
less time: the time reduction is 5.81×. This demonstrates
that:

1. Taking category information into account can help im-
prove the accuracy significantly. Therefore, it is impor-
tant and beneficial to incorporate such data in recom-
mender system.

2. Using category information also makes the training
more efficient, as we only need a small fraction of em-
bedding dimensions (10 vs. 223) to achieve compar-
atively good results. This also reduces training cost
significantly as we only need to update much less pa-
rameters for each training pair (i.e., those associated
with the subcategories the two items fall into).

On the other hand, SHE reduces the training time con-
sumption by 12.39×, although it yields slightly worse error

rate. There are a few possible explanations for its accuracy
degradation:

1. SHE is using a much lower dimensional style space
than the baseline (223 v.s. 10), which may limit the
expressive power of SHE. To validate this hypothesis,
we performed another group of comparison between
SHE and baseline, as shown in Table 2. From this
table we can see that under 10 embedding dimensions,
SHE actually beats baseline by as much as 55.10%.
Therefore, when both of the algorithms use the same
dimensions in the embedded style space, SHE in fact
yields much better results.

2. The allocation of dimensions on the category tree is not
fine-tuned. Current allocation 4-3-2-1 is only randomly
assigned by hand. There is great room to fine-tune this
allocation to improve the accuracy.

3. We may have over-fitted the embedding vectors on the
deepest level as there are many sparse subcategories
which only contains very few items and thereby are
associated with few training pairs. Unfortunately, we
don’t have enough time to validate this hypothesis due
to tight time constrains considering the size of datasets
we experiment with.

5.4 Visualization
It’s helpful to visualize our learned style space and see if

our proposed methods can project items with similar styles
to nearby locations. To this end, we use t-SNE [2] to embed
the learned 8-d style space into 2-d, preserving the rela-
tive distance information between different items. Figure 6
demonstrates our style space learned by CAE on our Men
Clothing dataset. As we can see from this figure, our method
works successfully to learn coherent styles across different
subcategories as it can project different visually compatible
items to nearby places within the style space.

Compared to the style space revealed by the baseline [1]
(i.e., Figure 1), our model can better ‘blend’ different cat-
egories to a certain degree which can mitigate the ‘limited
coverage’ challenge confronted by existing methods as we
identified earlier.

6. CONCLUSION
In this report, we presented two novel models to efficiently

learn the notion of visual compatibility across different sub-
categories by exploiting the hierarchical category informa-
tion. Context-aware Embedding utilizes category informa-
tion by assigning an embedding matrix to each of the sub-
categories, while SHE further reduces the number of param-
eters to learn by fully exploit the hierarchical structure to
facilitate sharing parameters. Experimentally, we found that
category information is very useful for the learning task. We
achieved competitive or even better prediction accuracy at



Figure 6: Illustration of a t-SNE [2] 2D visualization of the embedded style space uncovered by our model.
Items are a random sample comprised of 7000 images from the test set. Compared to the style space revealed
by the baseline [1], our embedding can ‘blend’ different categories to a certain degree which can mitigate the
challenge confronted by the baseline as we identified earlier.

a much lower training cost than the state-of-the-art method.
In spite of our promising results, there is still much room to
further improve our approach be by fine-tuning our hyper-
parameters (i.e., the dimension allocation). With a dataset
as huge as ours, we don’t have sufficient time to push our
proposed methods to their full strengths.

7. ACKNOWLEDGMENTS
We would like to take the opportunity to thank Prof. Ju-

lian, Sheeraz Ahmad, Daryl Lim, etc. for their dedicated
work in CSE 255, Fall 2015.

8. REFERENCES
[1] J. J. McAuley, C. Targett, Q. Shi, and A. van den

Hengel, “Image-based recommendations on styles and
substitutes,” in SIGIR, 2015.

[2] L. van der Maaten, “Accelerating t-sne using tree-based
algorithms,” Journal of machine learning research,
2014.

[3] A. Garcia, I. Torre, and M. T. Linaza, “Mobile social
travel recommender system,” in Information and
communication technologies in tourism 2014, pp. 3–16,
Springer, 2013.

[4] Y. Jing, D. Liu, D. Kislyuk, A. Zhai, J. Xu,
J. Donahue, and S. Tavel, “Visual search at pinterest,”
arXiv preprint arXiv:1505.07647, 2015.

[5] S. Bell and K. Bala, “Learning visual similarity for
product design with convolutional neural networks,”
ACM Transactions on Graphics (TOG), vol. 34, no. 4,
p. 98, 2015.

[6] E. Simo-Serra, S. Fidler, F. Moreno-Noguer, and
R. Urtasun, “Neuroaesthetics in fashion: Modeling the
perception of fashionability,” in CVPR, 2014.

[7] V. Jagadeesh, R. Piramuthu, A. Bhardwaj, W. Di, and
N. Sundaresan, “Large scale visual recommendations
from street fashion images,” in SIGKDD, 2014.

[8] Y. Kalantidis, L. Kennedy, and L.-J. Li, “Getting the
look: clothing recognition and segmentation for
automatic product suggestions in everyday photos,” in
ICMR, 2013.


