
Text-Based Rating Predictions on Amazon Health &
Personal Care Product Review

Weikang Chen
wec085@eng.ucsd.edu

Chihhung Lin
chl584@eng.ucsd.edu

Yi-Shu Tai
yitai@eng.ucsd.edu

ABSTRACT
In this assignment, we are going to predict the ratings based
(mainly) on review texts and find out what kind of words
have possitive and negative effect on ratings. We assume a
situation that we only get the reviewers’ id, products’ id, re-
view texts for each reviewer and product pairs and the time
the reviews were written. These are very common combina-
tions in the online reviewing system. We choose the ”Health
& Personal Care” category of Amazon review [7] as the data
set we’re going to build and test our model. The first thing
we do is performing some analytical exploration on the data
set in order to better understanding the properties of the
data set and finding possibly useful features. Second, we
build a simple model that consider only the global aver-
age and the offset of each word in the review texts as our
baseline model. After that, we build three models, the first
one is latent factor model that only considers the reviewers
and products, the second model we add on the interaction
between words and other features and the last one is the
support vector regression model. In the end, we compare
the performance of each model and draw a conclusion.

Keywords
latent factor model, linear regression, support vector re-
gression, rating prediction, matrix factorization, SVD, data
analysis

1. INTRODUCTION
The rating prediction has been playing a important role

in nowadays business. By predicting precisely the rating
for a user, the companies can get access to the answer of the
following questions like ’What will he/she buy together with
this product?’ or ’Does he/she like this kind of product?’.
With such data, the companies would be able to conduct
some statistical analysis and make some business decisions
like whether to cut the budget of that item . The same
story happen to customers. They need the predictions of
a product to help them decide whether they will buy it or

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

not. In our paper, we try to make the best prediction on
rating using reviewerID, productID, review text and review
time. We compare the result of several different models like
latent-factor model and SVM in the following sections and
make conclusions at the end of the paper.

The rest of the paper is organized as follows: section 2 in-
troduces some statistical analysis on our data set. Section 3
describes our prediction task and how we evaluate our work.
Section 4 covers the whole process of our research, including
set a baseline, optimizing different models, make comparison
and some interesting findings. Section 5 shows the result of
our experiment and makes conclusions on our work.

2. DATA ANALYSIS

2.1 Data property
We decide to use the amazon review data [7] and focusing

on ”Health and personal care” category. The whole data set
contains 2,982,356 reviews with 1,851,154 unique reviewers
and 252,331 unique products. In average, each reviewer only
gives 1.61 reviews and each product receives 11.82 reviews.
Since the data set is very large, we randomly extract ap-
proximately 33% of the entire data set as the training data,
which is shown in the Table 1.

In order to validate and test our model, we extract two
other disjoint data sets as validation data and testing data.
Each of the data set are about 13% of the whole data set.
Cold start problem is an important issue for recommenda-
tion system. As a result, we calculate how many reviewers
and products in the validation and testing data have never
be seen in the training data. This is a measurement of how
serious the cold start problem is. Table 2 shows the result.
As we can see, nearly 75% of the reviewers and 30% of the
products are new to the training data.

2.2 Statistical analysis
In this paragraph, we’re going to do some statistical anal-

ysis on both training data and the entire data set first. Then
we’ll compare the result and draw a conclusion. We’ll use Dt
as the shorthand of training data and D as the entire data.
Since it is a prediction task, the distribution of the rating
is fairly important. For Dt and D, the average rating are
both 4.108 to the third digit after the decimal point. The
distributions are shown in Fig 1. The histograms indicate
that over 75% of the reviewers rate the product higher or
equal to 4.0.

Furthermore, we would like to find out whether there’re
some correlation between the rating and other features. First,

Table 1: overview of the data
total review # of unique user # of unique item

whole data set 2982356 1851154 252331
training data 1000397 775622 157325

validation data 399220 347534 98613
testing data 400375 348297 98450

Table 2: new reviewer and product in validation and testing data
total reviews # of unique user # of unique product # of new user # of new product

validation data 399220 347534 98613 261081 29524
testing data 400375 348297 98450 261533 29400

Figure 1: Distribution of each rating

Figure 2: Average words in Review of each rating

we examine whether the number of words in a review text
affects the rating. Fig 2 is the average number of words
in Dt and D respectively. An interesting thing is that the
average number of words has the smallest value when the
rating is 5.0. However, the standard deviation of the num-
ber of words within the same rating group is so large that
the average number of words seems meaningless.

Second, we want to find out the relation between time and
rating. The time feature provided in the data is a string
represent the unix review time. However, directly using the
unix review time as a feature is not a good idea. We have
to turn it into discrete, periodic time sequence like week
or month which make more sense. We first calculate the

Figure 3: Average Rating on each day of a week

Figure 4: Average Rating on each month

average rating on each day of the week. Fig 3 shows the
result on Dt and D.

As we can see, the rating is uniform in each day. So we
consider there’s no significant relation between weekday and
rating. Then we calculate the average rating in monthly
bases and we discover that from August through November,
the average rating is lower than the other months. The
results are shown in Fig 4.

To sum up this section, we find out that the distribution
of our training data and entire data are very similar. So
it shouldn’t be a problem to use the training data set to
train our model instead of using the entire data set. Second,
though the length of the review text and the day of review
seem to be irrelevant to the rating, the month of review
suggests that the rating varies in different time of a year.
This finding gives us a thought that perhaps the month of

review could be a useful feature.

3. PREDICTIVE TASK
Our main idea is to predict the rating based on reviewer

ID, product ID, review text, and unix review time. As a
result, we extract these features and eliminate others like
helpfulness and summary. Ratings are discrete number scale
from 1.0 to 5.0. reviewer ID and product ID are unique
string for each user and product. Review text is a raw se-
quence of words written by the user. Unix review time is
the time that this review was published.

Given a reviewer’s review on an item, and going to predict
the rating to product given by the user. Formally, let u
denote the reviewer ID, i denote the product ID, r be the
actual rating, Tui be the review text given by the user and
tui be the time that the review being recorded. We want to
find f(·) such that:

arg min
f

(f(u, i, Tui, tui)− r)2 + λ(Θ)2 (1)

We will use the data set described in previous section, and
report RMSE on test set to evaluate our models.

4. MODEL
If Tui and time stamp is not provided, it’s a classic rating

preiction problem. There is a classic latent factor model [6]
for this kind of problem:

arg min
α,βu,βi,γu,γi

(r − (α+ βu + βi + γuγi))
2 + λ(Θ)2 (2)

The model define the interaction between reviewer and prod-
uct as inner product, and let the model find the embedded
high dimension structure itself. There are many optimiza-
tion methods for solving this kind of task, such as Stochas-
tic Gradient Decent [6], Alternative Least Square [4], Monte
Carlo Markov Chain [1] etc. We will base on this classic
task, and discuss what we can do if review text is given as
extra information.

4.1 Preprocess
In the previous section, we discover that the number of

words in the review text can do nothing about the rating
since the standard deviation is so large. It seems to be more
reasonable to utilize the content of the review text. But be-
fore that, we do a little pre-processing about the review text.
First, we turn all the words into lowercase and remove all the
punctuations. After that, we remove the stop words based
on the stop word list in nltk python library [2]. Finally, we
use the Lancaster Stemmer provided by nltk python library
to do stemming for each word. Another pre-processing we
do is classify the unix time into each month. In the previ-
ous section, we find out that the average rating in August
through November is much lower than other months. So in-
stead of using the unix time directly, we classify them into
twelve months.

4.2 Baseline model
The model of our baseline in this prediction task is:

rating = α+
∑
w∈Tui

βw/|Tui| (3)

First, we calculate the average rating for each word. Then
we get the beta offset by subtracting the α, which is the

global average rating. Finally, we sum the β, average rating,
of every word in the review text and divide it by then length
of the text, then add it to the global average rating. For
example, intuitively, if the word ’fantastic’ appears in the
review text, there is a high possibility that the rating will
be 4.0 or 5.0. Thus we go through all the review text and find
what is the average rating of those reviews which contain the
word ’fantastic’. If the result is 4.7 and the global average
rating is 4.0 for example, it means that the word ’fantastic’
has a positive impact on rating, at about 0.7. For some
common word like ’the’, because it almost appears in every
review, so the average rating for ’the’ will be just the same
as global average rating, which means ’the’ has no impact
on rating, matching our common sense. To evaluate our
baseline model, we compare it with the simplest model -
just predicting the global average rating for all the reviews.
The result of the experiment showed that the RMSE of the
baseline on the test set is 1.26873, while the RMSE of the
simplest model is 1.33312 Thus It turns out that our model
is better than the simplest model, thus to be a valid baseline.

4.3 Model

4.3.1 Support Vector Regression
In many practice situations, linear model does great jobs

if we manipulate features in a correct way. To capture the
embedded high dimension structure of review text feature,
we treat review text as a sparse binary vector weighted by
reciprocal of length of review text:

(0, 0, 1/|Tui|, 0, 1/|Tui|, ..., 0, 1/|Tui|, 0, ..., 1/|Tui|, ..., 0)︸ ︷︷ ︸
|W |

(4)

The 1 in the vector indicates that we have such word in
review text. This treatment is useful in situations that we
do not know the embedded relation between features and
the label. Similar technique is used on reviewer ID, product
ID and timestamp feature because there is no information in
ID number and number of timestamp, so we expand it as a
binary indicator vector. Especially, as the analysis result in
section 2, we choose to use ’month’ as our timestamp feature
and expand it up to 12 dimesion feature. The whole map of
feature looks like:

(1, 0, 0, 0, ..., 1, ..., 0︸ ︷︷ ︸
12

, 0, 0, 0, ..., 1, ..., 0︸ ︷︷ ︸
|U|

, 0, 0, 0, ..., 1, ..., 0︸ ︷︷ ︸
|I|

, 0, 0, 1, 0, 1/|Tui|, ..., 0, 1/|Tui|, 0, ..., 1/|Tui|, ..., 0︸ ︷︷ ︸
|W |

)
(5)

Though it’s a very high dimension vector, it’s extremely
sparse. So, we choose to use LibLinear [3], a powerful learn-
ing tool for massive dataset, to handle this kind of feature.
Another reason to choose linear model is that we can eas-
ily see which features are important and which are not to
justify our approach.

4.3.2 Latent Factor Model
Based on the success of latent factor method which model

the reviewer-product interaction as inner product, we choose
to model the interaction between words and other features

Figure 5: Word Cloud of top positive words

Figure 6: Word Cloud of top negative words

in the similar way. Formally, we fit the model:

arg min
α,βu,βi,γu,γi,γw,γtui

(r − (α+ βu + βi+

γuγi + γuγtui + γtuiγi

+1/|Tui|(
∑
w∈Tui

γwγu +
∑
w∈Tui

γwγi +
∑
w∈Tui

γwγtui)+

1/|Tui|2
∑
w∈Tui

γ2
w)2 + λ(Θ)2

(6)

This model is similar to SVD++ [5] with additional inter-
action. The idea behind is that we would like to know how
reviewer writes such words in the review text, how such word
on the product and how two words appear in the same text
contribute to the rating. Similarly, we also add timestamp
feature as interactive variables. Similar as the previous sec-
tion, we consider ’month’ as our timestamp feature. Though
it looks complicate, we are still allowed to use similar tech-
niques, such as SGD, for fitting classic latent factor model.

5. RESULTS AND DISCUSSION
We list our results in Table 3. Our results are much bet-

ter than the original Matrix Factorization method even the
simplest baseline model. One reason is that review text pro-
vides more information about the rating. Another reason is

that because there are many new reviewer IDs and prod-
uct IDs which are not in the training set, traditional Matrix
Factorization method can do less things in this situation.
However, review texts help us find the hidden high dimen-
sion structure of new reviewer or new item, mentioned in
section 2.1 and 4.3.2, and resolve the cold start issue.

Moreover, as mentioned in section 4.3.1, we can take a
look at the weights of each word contributes to the rating
in our linear model. Figure 5 and Figure 6 show us which
words in the review text have significant relation with rat-
ing. In Figure 5, there are some positive words, like ”wow”,
”delight”, ”favorite”,... on the other hand we can see negative
words, like ”worst”, ”worthless”, ”refund”,... in Figure 6.

Besides, ’month’ feature also enhanced the performance of
our latent factor model which becomes our best overall. This
result meet our expectation in the analysis section. However,
timestamp feature did not improve the linear model. So,
there is nonlinear relation between ’month’ and rating which
cannot be discovered by linear model.

In sum, we can say that review text and timestamp are
powerful features to predict the rating that the reviewer
gives to the product if we carefully design the models. In
addition, we can rely on it to solve the cold start issue in
many rating systems.

Table 3: Results
Model RMSE
Global average 1.33312
Baseline model 1.26873
Support Vector Regression 1.02986
Support Vector Regression (with time info) 1.0303
Latent Factor Model (U x I) 1.30683
Latent Factor Model (U x I x W) 1.06557
Latent Factor Model (U x I x W x Time) 1.01505

6. REFERENCES
[1] C. Andrieu, N. de Freitas, A. Doucet, and M. Jordan.

An introduction to mcmc for machine learning.
Machine Learning, 50(1-2):5–43, 2003.

[2] S. Bird, E. Klein, and E. Loper. Natural Language
Processing with Python. O’Reilly Media, Inc., 1st
edition, 2009.

[3] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research,
9:1871–1874, 2008.

[4] H. Kim and H. Park. Non-negative matrix factorization
based on alternating non-negativity constrained least
squares and active set method.

[5] Y. Koren. Factorization meets the neighborhood: A
multifaceted collaborative filtering model. In
Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’08, pages 426–434, New York, NY, USA, 2008.
ACM.

[6] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8):30–37, Aug. 2009.

[7] J. J. McAuley, R. Pandey, and J. Leskovec. Inferring
networks of substitutable and complementary products.
CoRR, abs/1506.08839, 2015.

