
New User Booking Prediction for Airbnb Historical Data
Yingzhi Wu
A53102471

M.S. Computer Science
University of California,

San Diego
yiw376@eng.ucsd.edu

Zhimin Zhou
A53089795

M.S. Computer Science
University of California,

San Diego
zhz249@eng.ucsd.edu

Jingyuan Li
A53101535

M.S. Computer Science
University of California,

San Diego
jil663@eng.ucsd.edu

ABSTRACT
Performing data mining based on customers’ historical be-
havior statistics can reveal quite much hidden information
that companies weren’t paid attention to in the past. Cor-
rectly modeling the customers helps to guide the marketing
strategies. In this paper we explain our current best solu-
tion to predict Airbnb’s new users’ first booking destination.
First, we show our findings about the characteristics of the
dataset which is given by the company. We then talk about
our feature selection strategy based on these observations.
For model design, we land on three types of classifiers. Then
we discuss model optimization by introducing the one-vs-
the-rest strategy, and parameter tuning. Our prediction results
are evaluated according to the metric called NDCG (Normal-
ized discounted cumulative gain), which is suggested by the
hosting company. By looking at the value of NDCG and com-
paring with our competitors (We are at the 1st place when this
report is written), we are firmly convinced that our solution is
very effective.

Author Keywords
Supervised machine learning algorithm, Classification,
Gradient boosting

INTRODUCTION
Background
For online travel agencies (OTAs), the enormous user data
that they have been inherently maintaining is a mine of gold.
How to effectively enhance user experience and increase total
bookings by utilizing huge dataset remains a question to an-
swer. Airbnb opens this challenge to its potential employees.
From their point of view, by accurately predicting the desti-
nation a new user might travel to for the first time, ”Airbnb
can share more personalized content with their community,
decrease the average time to first booking, and better forecast
demand”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is provided that copies are not made or distributed for profit or commer-
cial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others must be honored. Abstract-
ing with credit is permitted.
December 1, 2015, La Jolla, California, USA.
Copyright c© 2015 UC San Diego

Problem Definition
As participants, we are required to predict the new users’ first
booking destination at the granularity of country. There are
11 destinations to choose from, including Australia, Canada,
Germany, Spain, France, Great Britain, Italy, Netherlands,
Portugal, the U.S., and all the rest are labeled as ”others”.
Users who haven’t made a booking are categorized with the
”NDF” label in the destination field.

In the dataset, Airbnb provides a labeled training set of
171239 entries, and a test set of 43673 entries to predict with.
There are 2 other statistical data sheets regarding some geo-
graphical information about each of the listed countries and
there population age and gender distribution. A session set
documented the time elapsed for each client side and server
side actions, with no references provided to explain how the
naming matches with operations.

The answer to every entry that each participating team are
expected to submit, is a list of ranked destinations that a new
user might make as the destination of his first booking. One
can list up to 5 destinations for predicting a new user’s de-
cision. The prediction is evaluated by NDCG (Normalized
discounted cumulative gain).The points reward will decrease
as the match of prediction comes in lower ranks.

Our Solution
First, we study the dataset by collecting statistics and visual-
ization. According to the calculated variances and some rea-
soning based on travelers’ behaviors, we pick out the features
for our model. For model selection, we first make our mind
on staying with supervised learning algorithms, then narrow
the category down to utilize classification methods. By tak-
ing a close look to different classifiers, we choose 3 models
to perform a basic test. From there, we are convinced that
the Gradient Boosting algorithm seems to work best for this
problem. As for optimization and model tuning, we utilize
a ”one-vs-the-rest” strategy to help conduct better classifica-
tion, and our parameters are tuned based on this improved
model. We evaluate our results against the NDCG metric,
which is also proposed by the company. Our submission re-
sults beat all the rest teams up to the time this report is being
finalized.

Related Work



Figure 1. Kaggle Competition Dashboard Screen Shot Our team mem-
bers take up the top 3 positons

There are some literatures on tourist destination choice which
are related to our topic. One of them is using Spatial In-
teraction Models to predict the likelihood of people or even
goods moving between two locations in space. Generally, this
model predicts the interchange of people between all points
of a discrete set of locations or zones in a square matrix of
movements or flows from each zone to zone. This model
strongly relies on three types of model: spatial data, typically
the amount of population, environment, etc. within a zone;
the distance or travel time between two locations; spatial in-
teraction data, whether in the form of prior matrices or thor-
ough the estimation of structural parameters, like records of
the movements of travelers between locations in space. The
strength of this model is its simplicity. However, its simplic-
ity may also be the major weakness of this model approach,
since it closely depends on the spatial data. If the actual pro-
cess is context dependent or cant provide spatial data, like
our experiment, this model may result in misleading predic-
tions.[1, 3]

Another approach is a rule-based model of tourist destina-
tion choice. Different from the algebraic spatial interaction
model, qualitative rule-based model assumes that a set of log-
ical rules drive the choice behavior of interest. Traditionally,
rule-based model depends on expert knowledge which lacks
any test of whether expert knowledge constitutes a valid rep-
resentation of observed choice behavior. Besides, there are
only 3 valid research spatial data. From what we learn, this
approach likes the Decision Trees Model but using empirical
data from recent researches. However, the dataset used by
this model mainly presents the rules of European, while the
users of our test set are all American. Therefore, we doubt
that this model using scarce empirical data can work well
with our dataset.

The evaluation metrics of our problem is a popular evaluation
method for multiclass classification models. As described in
[2], a perfect classifier can lead to perfect DCG score. To il-
lustrate this argument, the author casted a Webpage Ranking
problem into a classification problem and adopted Gradient
Boosting model for classification. Their experimental results
demonstrated that this model outperformed the typical regres-
sion model. For our problem, this model could also be very
useful due to the similarity of the evaluation metrics.

DATASET ANALYSIS
We are using the dataset from the Airbnb Recruiting: New
User Bookings completion of Kaggle for this experiment.
This dataset reveals basic information of users who have or
havent book their first destination in Airbnb. Besides, this
dataset includes other information like demographics of spec-
ified countries, users web session records and some summary
statistics. All information is captured in four files:[4]

• train users.csv: the training set of users. Id,
date account created, timestamp first active,
date first booking, gender, age, signup method,
signup flow, language, affiliate channel(what kind of
paid marketing), affiliate provider(where the marketing
is, e.g. Google, Craigslist), first affiliate tracked(whats
the first marketing the user interacted with before the
signing up), signup app, first device type, first browser,
country destination(the target variable we want to predict)

• sessions.csv: web sessions log for users. user id, action,
action type, action detail, device type, secs elapsed(the
number of seconds between actions were recorded)

• countries.csv: summary statistics of destination countries
in this dataset and their locations. Country destination,
lat destination(the latitude of geographical center of the
country), lng destination, distance km(how far is the des-
tination country from the US), destination km2, des-
tination language, language levenshtein distance(the lan-
guage levenshtein distance between the destination coun-
try and English)

• age gender bkts.csv: summary statistics of users age
group, gender, country of destination. Age bucker(age
range, e.g. 35-39, 40-44), country destination, gender,
population in thousands, year.

From the train users.csv, we calculate the number of users
who booked their first destination within different countries.
From Figure 2, more than half of the users (99,152, while the
total number of users in train users.csv is 171,239) havent
booked their first destination yet (NDF = no destination
found). In addition, since all the users in this dataset are from
the USA, almost one third of the whole users choose the USA
as their first destination in Airbnb. While the remaining one
sixth of the whole users choose from 10 different countries
(FR, CA, GB, ES, IT, PT, NL, DE, AU and other).



Figure 2. Number of users of different destination countries in training
data

Data Pruning
Since our target is to predict which country a new users first
booking destination will be, and those whose first destination
is NDF cant provide any effective assumption for us to pre-
dict a specified destination, we decide to discard those user
records which destination is NDF.

Data Users Destination
Original 171,239 12
Dataset A 72,087 11
Dataset B(with destination is NDF,
discarded)

99,152 1

Table 1. Dataset Information

Feature Parsing
After discarding those NDF data, we start to study the ba-
sic information of users from train users.csv. We notice that
most of the features in train users.csv are not numeric but us-
ing words to present different value. In order to make the pre-
dict algorithm work effectively, we decide to use Encode La-
bel for reference. The main idea of Encode Label is encoding
some feature with value between 1 and n classes which is the
number of types of this feature. In instance, first device types
values include Android Phone, Android Tablet, iPhone, iPad,
Desktop and etc. so we encode these device type into the inte-
ger number from 1 to 9, using 1 to represent Android Phone,
2 to represent Android Tablet and so on.

Meanwhile, we also find that the raw data use differ-
ent formats to describe the time information, like 2014-
04-01 in date account created and date first booking, while
20140401000102 in timestamp first active. Although En-
code Label can translate these time value into distinct num-
bers, it will introduce a huge range of value while each value
only contributes to a limited number of samples. Therefore,
we decide to split the original time value into 3 different fea-
tures: year, month and day. This process could cause over-
fitting because of increasing the number of features, but we
will use feature selection to address this problem.

Besides, considering the problem that some feature has a
huge range of values but most values correlate to a small
number of samples, we combine the value of age feature into
groups. In each age group, the range presents one decade.
Because age is sensitive information, we find out that almost
a quarter of the users dont provide the age information. How-
ever, via summing up the number of users in different age
ranges, we notice that the destination distribution of unknown
is the same as the one of the average age range (30-39). So
we change the unknown age to the average age range.(As
Figure 3)

Figure 3. Number of users of different age group in training data

Feature Selection
At the glance of the original dataset, we find out that some
features have the same value in most samples. We decide to
perform feature selection for three benefits:[5]

1. Reduce overfitting. Less redundant data means less oppor-
tunity to make decisions based on noise.

2. Improve Accuracy. Less misleading data means improving
modeling accuracy.

3. Reduce training time. Less data means less time for the
algorithm training data.

First, we remove features with low variance.[6] After pars-
ing features from the raw data, we have 19 features
(year, month, day, created year, created month, created day,
book year, book month, book day, affiliate channel, gen-
der, age, language, affiliate provider, first affiliate tracked,
first device type, first browser, signup flow, signup app,
signup method). And then we use VarianceThreshold from
sklearn,feature selection library to remove features with low
variance. As we set the variance threshold to 1.4, this al-
gorithm helps us remove all features whose variance is less
than 1.4. After that the number of features is decreased to
8 (month, book month, age, language, affiliate channel, af-
filiate provider, first device type, first browser). And com-
parison of the nDCG (the evaluation metric which will be
discussed in the later chapter and it values on the interval 0.0
to 1.0. Closer to 1.0 means better prediction) and consuming
time to predict the validation set between using all 19 fea-
tures and using only 8 features after removing features with
low variance is shown in table 2. From the table, we find
that albeit the nDCG of prediction of validation set with 19



features is better than the one with 8 features, the nDCG of
prediction of test set with 8 features outperforms the one with
19 features because of overfitting and the consuming time is
reduced by half. Therefore, we decide to use the 8 features
for now.

#features nDCG of valida-
tion set

nDCG
of test
set

Time to predict
validation label

19 0.924904200671 0.92134 0:00:22.911990
8 0.924822141755 0.93311 0:00:11.391343
7 0.924874824008 0.93320 0:00:09.113650

Table 2. Results of using Gradient Boosting Classification with different
features

Second, we find out that among the remaining 8 features,
there are two features are closely correlated, which are affili-
ate channel, affiliate provider. From the raw data, we notice
that whenever affiliate provider is google, affiliate channel is
seo; whenever affiliate provider is craigslist, affiliate channel
is other; and whenever affiliate provider is direct, affili-
ate channel is direct. Hence, we decide to discard affili-
ate channel and then we have only 7 features with better
nDCG results and less time to predict.

To better view how the chosen features affect the predic-
tion, we use bar diagrams to observe distribution of the
number of users within different features. From these dia-
grams, we notice that these features have a remarkable influ-
ence on predict the destination. Like first created month and
first booking month, the number of users who choose Euro-
pean countries stays higher in the middle of the year than in
the winter, while the number of users who choose Australia
stays higher in the winter than in the summer.(as Figure 4 and
5) By calculating the ratio of users in specified age group in
all users in this country, we also find different trends among
different age groups. Users whose age is from 20 to 29 prefer
Spain and Germany, while those whose age is from 50 to 59
prefer Portugal and Australia.(as Figure 6 and 7)

Figure 4. Number of users of different first created month in training
data

As for information from other files, like sessions.csv, coun-
tries.csv and age gender bkts.csv, we decide not to use any
features generated from these files based on the following
reasons.

Figure 5. Number of users of different first book month in training data

Figure 6. ratio of users whose age is 20-29 of different destinations

Figure 7. ratio of users whose age is 50-59 of different destinations

1. In the sessions dataset, the data only dates back to
2014/1/1, while the users dataset dates back to 2010, which
means there are more two thirds of users cant be matched
with any records in sessions dataset. We dont want incom-
plete samples affect the accuracy of our prediction.

2. In the countries dataset, since we are predicting users first
booking destination, while this dataset is about the infor-
mation of 10 different destinations, we dont have means
to pick any feature because of not knowing the destination
yet. So we dont use features from this dataset.



3. In the age gender buckets dataset, we already choose age
group based on the feature parsing and feature selection
procedures before. In order to get rid of replication, we
decide not to use any features from this dataset, either.

METHODOLOGY
Given that our dataset comes with categorical labels, which
are the destinations of users’ fist booking. Each data entry
is a pair of an input vector and a desired output value. This
matches with the supervised learning problem setting. Since
the expected prediction output is discrete categorical values,
we further identify such problem to be best solved by classi-
fication methods.

Classification
We then focus on finding a classifier which is the optimal fit
for solving this problem.

Gaussian Naı̈ve Bayes

We start from the simplest classification model, Naı̈ve Bayes.
Although the assumptions of Gaussian Naı̈ve Bayes model
is apparently over-simplified, it works very well on our fea-
ture set. As discussed in the lecture, Naı̈ve Bayes methods
are a set of supervised learning algorithms based on apply-
ing Bayes theorem with the naı̈ve assumption of indepen-
dence between every pair of features. The classification result
replies on the prior probability of classes and the posterior
probability of features given labels. Different naı̈ve Bayes
classifiers differ mainly by the way to compute the posterior
distribution. Gaussian Naı̈ve Bayes assumes the likelihood of
features to be Gaussian.

There are two main factors that essentially influence the per-
formance of Naı̈ve Bayes classifier according to [7], an even
distribution of nodes in each feature vector and an even de-
pendence distribution of feature vectors. Our feature selec-
tion criteria just guaranteed that our feature set satisfy both
of the requirements. First, from Figure 3 Figure 5, we can
see that the data point distribution in each feature class is rel-
atively even and Gaussian shaped. Second, out of 19 features,
we only chose 7 of them with the highest variance and low-
est correlation. This ensures the model to give a second best
performance of all of our three models.

Nearest Neighbor Classification

Nearest Neighbor[8, 9] Classification assumes that the data
is in a feature space. More exactly, the data are in a matric
space. Based on different applications, the data can be scalars
or even multidimensional matrix. Since the data points are
in the feature space, they have a notion of distance between
each other. Therefore, Nearest Neighbor Classification is a
type of instance-based learning or non-generalizing learning:
it doesnt try to construct a general internal model but simply
stores instances of the training data. And then the classifica-
tion is computed form a simple majority vote of the nearest
neighbors of each point: a query point is assigned the data
class which has the most representatives within the nearest
neighbors of the point.

Among several implementations of Nearest Neighbor Clas-
sification, we decide to pick the most commonly used tech-
nique K Neighbors Classification. Basically, what this algo-
rithm do is that it tries to find the k nearest neighbor and do
a majority voting. A very common thing to do is weighted
based on its distance, for example, the weight equals the in-
verse of the distance. In this case, neighboring points have
a higher vote than the farther ones. Therefore, the optimal
choice of the value k is highly data-dependent, while in gen-
eral, a larger k suppresses the effects of noise, but makes the
classification boundaries less distinct.

To pick an optimal k, we make a experiment to try different
k range from 1 to 100 to calculate a better validation pre-
dictions. As a result learned from Figure, we find out when
k=25, the nDCG of validation set is the best and those values
larger than 25 stay the same performance but cost more time
to classify a new data set. Therefore, we decide to use k=25
to train this model.

Figure 8. nDCG of different K in Nearest Neighbor Classification. The
best performance is when K=25

Gradient Boosting

”When designing a model in domain-specific areas, one strat-
egy is to build a model from theory and adjust its parameters
based on the observed data”[13]. However, researchers of-
ten aren’t able to acquire such information in the first place.
So we sometimes fall back to data-driven models. Instead of
building a single strong predictive model, the ensemble ap-
proach maybe a better choice.

Gradient Boosting is such a machine learning algorithm that
produces a prediction model which ensembles weak predic-
tion models such as decision trees. It builds up the model in
a stage-wise way simulates other boosting methods. It gener-
alizes following the gradient descent fashion, that is, by opti-
mize an arbitrary differentiable loss function.

The algorithm optimizes the loss function over the function
space by iteratively picking a weak hypothesis function that
points in the negative gradient direction, and then combine
those weak learners together iteratively into a single strong
learner. It introduces a weak learner in each stage to com-
pensate the shortcomings of existing weak learners. Such
shortcomings are measured by calculating gradients on loss
functions.

Since we have discrete non-linear data, we pick the K-class
multinomial deviance loss function for cost measurement.



L(y, p(x)) = −
K∑

k=1

I(y = Gk)logpk(x)

= −
K∑

k=1

I(y = Gk)fk(x) + log

K∑
l=1

efl(x)

,

where,

pk(x) =
efk(x)∑k
l=1 e

fl(x)

We calculate the probabilities for each class from generaliz-
ing logistic model to K classes.

To build up our model, we first choose K score functions:
f1, f2,..., fK . Each of these functions assigns a score for the
matching class. The scores are used to calculate probabilities
pk(x) as mentioned above.

Predicted Label = Class that has the highest probability.

Next, iteratively calculate loss Function for each data point.

• Step 1: turn the label yi into a (true) probability distribution
Yc(xi).

• Step 2: calculate the predicted probability distribution
pc(xi) based on the current model f1, f2,..., fK .

• Step 3: calculate the difference between the true probabil-
ity distribution and the predicted probability distribution.

Here, our goal is to minimize the total loss, so as to match
the true probability distribution as closely as possible. After
iterations, we achieve this goal by adjusting our models f1,
f2,..., fK by taking gradient descent.

Given any differentiable loss function L, start with initial
models f1, f2,..., fK , iterate until converge:
calculate negative gradients for class 1:

g(xi) =
L(yi, f1(xi))

f1(xi)

calculate negative gradients for class 2:

g(xi) =
L(yi, f2(xi))

f2(xi)

...

calculate negative gradients for class K:

g(xi) =
L(yi, fK(xi))

fK(xi)

fit a regression tree h1 to negative gradients g1(xi) fit a re-
gression tree h2 to negative gradients g2(xi)

...

fit a regression tree hK to negative gradients gK(xi)

f1 := f1 + ρ1h1

f2 := f2 + ρ2h2

...

fK := fK + ρKhK

where ρ is the learning rate to control. Learning rate is used
for scale the contribution of each new base model.

It turns out that, for this specific travel prediction task, the
Gradient Boosting algorithm performs the best.

We will visit the discussion of performance optimization re-
garding different parameter settings in detail, in the next sec-
tion.

OPTIMIZATION

OVR Strategy
Typically, there are two multiclass classification strategies,
one-vs-one (OvO) and one-vs-the-rest (OvR). One-vs-one
(OvO) strategy constructs one classifier per pair of classes.
At prediction time, the class which receives the most votes
will be selected. If there is tie, then it selects the class with the
highest aggregate classification confidence by summing over
the pair-wise classification confidence levels computed by the
underlying binary classifiers. Since it requires one classifier
with each pair of classes, it works well with situations where
comparisons between individual classes are important. For
our problem, it will complicate the problem since it is not
necessary to do classification between one class with each of
the rest of classes individually.[10]

Instead, one-vs-the-rest (OvR) consists in fitting one classi-
fier per class. For each classifier, the class is fitted against
all the other classes. The strategy fits perfectly with the goal
of our problem since we only care about the probability es-
timates of each class for feature X returned by its own sub-
classifier. With the probability estimate list, we can easily
generate a list with the top 5 most possible destination coun-
tries for each test user.

One-vs-the-rest (OvR) strategy applies over the layer of de-
tailed classification models. It accepts an estimator object
parameter which implements fit and prediction functions. In
our project, we passed the three sub-classifiers discussed in
this section to the strategy function respectively. The advan-
tage of wrapping the sub-classifiers is that each class has one
classifier instead of only one classifier for all the classes. The
performance on the validation set is much better than directly
fitting one classifier for all the classes.

Parameter Tuning



The Gradient Boosting model with default parameter settings
gives the best testing performance on Kaggle. To further im-
prove the performance, we tuned the parameters from three
aspects.

1. Number of classes: This parameter controls the numbers of
boosting stages. Generally speaking, with more boosting
stages, the validation error will be smaller. We set other
parameters to be default, the evaluation score on validation
set with number of classes from 1 to 20 is shown in Table
3. The data shows a strong linear relationship. But for
testing data, large value of number of classes will overfit
the model and give bad evaluation score. After sufficient
amount of trials, we found that the best value is 11.

2. Max depth: This parameter controls the depth of the learn-
ing tree. The size of the learning tree cant be two large or
too small. We tuned this parameter between 1 to 4 with
n estimator = 11 and other parameters to be default. The
evaluation score with the value of max depth from 1 to 4
is listed in Table 4. The data indicates that with max depth
= 3, the evaluation score is the highest. The test result on
Kaggle also justifies the rule.

3. Learning rate: The learning rate shrinks the contribution of
each tree. As we change the value of learning rate and cal-
culate the evaluation score of number of classes from 1 50,
we found that smaller learning rate favors smaller number
of classes. Since our best performance number of classes is
11, after great amount of trials, we settle the learning rate
to be a smaller value as 0.05. And this combination also
gives the best performance on Kaggle as expected.

number of
classes

nDCG of valida-
tion set

1 0.924898
2 0.924874
3 0.924814
4 0.924839
5 0.924860
6 0.924873
7 0.924860
8 0.924894
9 0.924891
10 0.924852
11 0.924914
12 0.924939
13 0.924914
14 0.924916
15 0.924913
16 0.924946
17 0.924984
18 0.924989
19 0.925004
20 0.925007

Table 3. The evaluation score on validation set with number of classes
from 1 to 20, other parameters are set default

max depth nDCG of valida-
tion set

1 0.924874
2 0.924824
3 0.924895
4 0.924712

Table 4. The evaluation score on validation set with max depth from 1
to 4, number of classes = 11, other parameters are set default

EVALUATION
We evaluate different models on the rating prediction prob-
lem. First, let’s explain the metric used for this task’s evalua-
tion.

Metric
As Airbnb proposed, the evaluation metric for this task
is to calculate NDCG (Normalized discounted cumulative
gain[11, 12]) @k where k = 5. Discounted cumulative gain
(DCG) is a measure of ranking quality. In information re-
trieval, it is commonly used to measure effectiveness of web
search engine algorithms or related applications. Using a
graded relevance scale of documents in the result set, DCG
measures the effectiveness or gain of a prediction based on
its position in the result list. The gain is accumulated from
the beginning of the result list to the end with the gain of
each prediction result. DCG is calculated as:

DCGk =

k∑
i=1

2reli − 1

log2(i+ 1)

Where rel i is the relevance of the result at position i. Since
for each new user in test set, we can make a maximum of 5
predictions on the country of the first booking. The ground
truth country is marked with relevance = 1, while the rest
have relevance = 0. Therefore, in our case, to gain a bet-
ter accuracy, we decide to make 5 predictions for those who
have booked their first destination based on whether the value
of date first booking is not empty, while for those whose
date first booking value is empty, we predict their destina-
tion is ’NDF’. If we predict the accurate destination in our
result list, then the DCG for this prediction equals 1 / log2(i
+ 1), where i is the position of the accurate destination in our
prediction list. All the wrong guesses dont need to be accu-
mulated since their relevance is 0 making the numerator of
the fraction above equals 0. In the worst case, we cant give a
right assumption in all 5 chances, the DCG will be 0; while in
the best case, we predict the right result in the first position,
then the DCG will be 1. Therefore, the DCG calculations are
relative values on the interval 0.0 to 1.0.

To normalize the discounted cumulative gain, we need
NDCG, whichG is calculated as:

nDCGk =
DCGk

IDCG



IDCG is the ideal DCG for a given set of predictions. As we
mentioned before, the maximum value of DCG is 1 when we
predict the destination accurately and at the first try. So the
final result of NDCG is the result of the sum of DCG of all
test set prediction divided by the number of users in the test
set.

Performance on Different Models
We use the above three model: Nearest Neighbors Clas-
sification, Gaussian Nave Bayes, Gradient Boosting Clas-
sification, with one-vs-the-rest(OvR) multiclass/multilabel
strategy to predict the test dataset. As we mentioned
in Feature Selection, we decide to use the following fea-
tures: month, book month, age, language, affiliate provider,
first device type, first browser. While we compare the per-
formance of different models, we randomly split our dataset
from train users.csv into 9:1 (train:validation). While be-
fore we submit our results to Kaggle, we use all data in
train users.csv for better performance to train data with dif-
ferent models and get the predictions of the test data sepa-
rately. In this case the ratio of train with test is 171239:43673,
almost 4:1.

model nDCG of
validation
set

nDCG of
test set

Time to
predict
validation
label

Nearest Neigh-
bors Classifica-
tion

0.915984 0.92582 0:00:25.85

Gaussian Nave
Bayes

0.92482 0.92680 0:00:01.16

Gradient Boost-
ing Classification

0.92502 0.93328 0:00:08.85

Table 5. Results of classification with different models

In this experiment, we use K=25 in Nearest Neighbors Clas-
sification model, and use learning rate=0.05 and number of
classes=11 in Gradient Boosting Classification. From the re-
sult, based on the nDCG in validation set, all three model
pass 0.915 but the result of Gradient Boosting Classification
outperforms other models subtly with the secondary speed of
predicting the result. Since we use all data to train the mod-
els, the nDCG in test set is bigger than the one in validation
set among these three models. Similarly, the performance
of Gradient Boosting Classification in test set is still better
than the remaining two models. From this result, we cant
conclude that Nearest Neighbors Classification and Gaussian
Nave Bayes fail, since based on the ranking of Kaggle and the
subtle difference among Gradient Boosting Classification and
themselves. However, with the help of more advanced algo-
rithm, Gradient Boosting Classification is the best model for
us to predict in which country a new user will make his or her
first booking in Airbnb. By using this model, due to Decem-
ber 1st, 2015, our team is still No. 1 in this competition on
Kaggle, and all the top three are our three team members(as
Figure 1).

CONCLUSION
We propose to use a Gradient Boosting model (with deviance
loss functions) compounding with the ”one-vs-the-rest” strat-
egy for such travel destination prediction task. In our case,
the recommend system made with our model could best per-
form on the test set with a high matching nDCG value being
0.93328. The optimal parameter tuple that we figured out has
the learning rate being 0.05, with 11 estimators to build de-
cision trees up to 3 levels. Always making full ranks (up to
5) of prediction and ordering by the predicted certainty opti-
mize our solution. The features that are most helpful to this
prediction task including the following attributes from each
record: month, booking month, user age, user language, the
affiliate provider, user’s first used device type and first used
browser for logging into Airbnb’s system.

ACKNOWLEDGEMENTS
We thank the University of California, San Diego, the Com-
puter Science and Engineering department, and our CSE 255
class.

REFERENCES
1. Spatial Interaction Models. http://tfresource.org/

Spatial_Interaction_Models#Related_Content

2. McRank: Learning to Rank Using Multiple Classification
and Gradient Boosting. http://machinelearning.
wustl.edu/mlpapers/paper_files/NIPS2007_845.pdf

3. Modelling tourist destination choice using a decision
table induction algorithm. http://epn.sagepub.com/
content/35/9/1669.full.pdf+html

4. Airbnb Recruiting: New User Bookings.
https://www.kaggle.com/c/
airbnb-recruiting-new-user-bookings/data

5. Feature Selection in Python with Scikit-Learn.
http://machinelearningmastery.com/
feature-selection-in-python-with-scikit-learn/

6. Feature Selection with Scikit-Learn.
http://scikit-learn.org/stable/modules/feature_
selection.html

7. The Optimality of Naive Bayes. http://www.cs.unb.ca/
profs/hzhang/publications/FLAIRS04ZhangH.pdf

8. Nearest Neighbors Classification. http:
//scikit-learn.org/stable/modules/neighbors.html

9. A Detailed Introduction to K-Nearest Neighbor (KNN)
Algorithm. https:
//saravananthirumuruganathan.wordpress.com/2010/
05/17/a-detailed-introduction-to-k-nearest-\
neighbor-knn-algorithm/

10. One Vs Rest Strategy http://scikit-learn.org/
stable/modules/multiclass.html

http://tfresource.org/Spatial_Interaction_Models#Related_Content
http://tfresource.org/Spatial_Interaction_Models#Related_Content
http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2007_845.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2007_845.pdf
http://epn.sagepub.com/content/35/9/1669.full.pdf+html
http://epn.sagepub.com/content/35/9/1669.full.pdf+html
https://www.kaggle.com/c/airbnb-recruiting-new-user-bookings/data
https://www.kaggle.com/c/airbnb-recruiting-new-user-bookings/data
http://machinelearningmastery.com/feature-selection-in-python-with-scikit-learn/
http://machinelearningmastery.com/feature-selection-in-python-with-scikit-learn/
http://scikit-learn.org/stable/modules/feature_selection.html
http://scikit-learn.org/stable/modules/feature_selection.html
http://www.cs.unb.ca/profs/hzhang/publications/FLAIRS04ZhangH.pdf
http://www.cs.unb.ca/profs/hzhang/publications/FLAIRS04ZhangH.pdf
http://scikit-learn.org/stable/modules/neighbors.html
http://scikit-learn.org/stable/modules/neighbors.html
https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-\ neighbor-knn-algorithm/
https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-\ neighbor-knn-algorithm/
https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-\ neighbor-knn-algorithm/
https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-\ neighbor-knn-algorithm/
http://scikit-learn.org/stable/modules/multiclass.html
http://scikit-learn.org/stable/modules/multiclass.html


11. Discounted cumulative gain in wikipedia.
https://en.wikipedia.org/wiki/Discounted_
cumulative_gain#Normalized_DCG

12. Airbnb Recruiting: New User Bookings Evaluation.
https://www.kaggle.com/c/
airbnb-recruiting-new-user-bookings/details/
evaluation

13. Alexey Natekin1, and Alois Knoll2 Gradient boosting
machines, a tutorial Front Neurorobot. 2013; 7: 21

https://en.wikipedia.org/wiki/Discounted_cumulative_gain#Normalized_DCG
https://en.wikipedia.org/wiki/Discounted_cumulative_gain#Normalized_DCG
https://www.kaggle.com/c/airbnb-recruiting-new-user-bookings/details/evaluation
https://www.kaggle.com/c/airbnb-recruiting-new-user-bookings/details/evaluation
https://www.kaggle.com/c/airbnb-recruiting-new-user-bookings/details/evaluation

	Introduction
	Background
	Problem Definition
	Our Solution
	Related Work

	Dataset analysis
	Data Pruning
	Feature Parsing
	Feature Selection

	Methodology
	Classification
	Gaussian Naïve Bayes
	Nearest Neighbor Classification
	Gradient Boosting


	OPTIMIZATION
	OVR Strategy
	Parameter Tuning

	Evaluation
	Metric
	Performance on Different Models

	Conclusion
	Acknowledgements
	REFERENCES 

