
Why is My Question Closed?
Predicting and Visualizing Question Status on Stack Overflow

Yixing Lao
A53077415

y1lao@cs.ucsd.edu

Chenwei Xie
A53091839

chx037@eng.ucsd.edu

Yue Wang
A53102167

yuw331@eng.ucsd.edu

Abstract

A Stack Overflow question can be closed for 4 reasons,
namely “not a real question”, “not constructive”, “off
topic” or “too localized”. In this report, we are going to
tackle the task of predicting whether a Stack Overflow ques-
tion will be closed, and if yes, why it will be closed. We
first introduce the problem settings and the dataset, then we
use various visualization techniques to gain useful insights
on the dataset, and finally we show how we use Gradient
Boosted Tree to solve this classification problem effectively
and achiving 26th / 159 performance in the public leader
board on the Kaggle competition.

1. Introduction

Stack Overflow is a privately held website, it was cre-
ated to be a more open alternative to earlier Q&A sites such
as Experts-Exchange, it features questions and answers on
a wide range of topics in computer programming. For this
project, we use Gradient Boosted Tree to predict whether
a question in Stack Overflow will be closed and why it is
closed, we evaluate our result in a Kaggle competition [1].
In the following sections, we first perform some interesting
visualization on the dataset, and then introduce the predic-
tion algorithm we use, namely Gradient Boosted Tree. Fi-
nally, we present the results in the Kaggle competition and
give discussions.

1.1. The dataset

The training data for this Kaggle Stack Overflow close-
ness prediction contest ranged from July 31, 2008 to July
31, 2012. And the public leader board test data ranged from
August 1, 2012 to August 14, 2012 while the private leader
board test data ranged from October 10, 2012 to October
23, 2012. The arrangement of the data is very reasonable
because we use the previous information to predict whether
a question will be closed in the future.

The dataset classes are extremly biased. Most (97.9%)

questions are open while only 2.1% questions are closed.
The closed reasons were: 0.91% not a real question, 0.46%
not constructive, 0.52% off topic and 0.18% too localized.

The data includes the following tags: PostCreation-
Date, OwnerUserId, OwnerCreationDate, ReputationAt-
PostCreation, OwnerUndeletedAnswerCountAtPostTime,
Title, BodyMarkdown, Tags, PostId, PostClosedDate and
OpenStatus.

An example of the dataset is following:
• OwnerUserId: 136
• OwnerCreationDate: 08/02/2008 10:21:53
• ReputationAtPostCreation: 475
• OwnerUndeletedAnswerCountAtPostTime:

17
• PostId: 1496
• PostCreationDate: 08/04/2008 18:51:38
• PostClosedDate: 08/03/2012 16:38:59
• OpenStatus: not constructive
• Title: How do I fill a DataSet or a DataTable from a

LINQ query resultset?
• Tag1: linq
• Tag2: web-service
• Tag3: c#
• Tag4: query
• Tag5: vim
• BodyMarkdown:

How do you expose a LINQ query as an ASMX web
service? Usually, from the business tier, I can return
a typed DataSet or DataTable which can be serialized
for transport over ASMX.

public static MyDataTable CallMySproc()
{

string conn = ...;
MyDatabaseDataContext db = new

MyDatabaseDataContext(conn);
MyDataTable dt = new MyDataTable();
// execute a sproc via LINQ
var query = from dr in db.MySproc().

AsEnumerable select dr;
// copy LINQ query resultset into a

1

DataTable -this does not work !
dt = query.CopyToDataTable();
return dt;

}

How can I get the resultset of a LINQ query into
a DataSet or DataTable? Alternatively, is the LINQ
query serializeable so that I can expose it as an ASMX
web service?

2. Visualizing the dataset
For normal feature engineering, we could only try dif-

ferent features of the dataset and see if a feature has po-
tential correlation with our prediction. However, we think
that visualization is a more powerful tool than trying differ-
ent features, we would like to use human perception to find
the potential features and regard visualization as a heuristic
to determine useful features. On the other hand, we could
use visualization to find the structure of the dataset. For
this dataset, we use various visualization techniques such as
word cloud, heat map, parallel coordinates and bar chart to
show the structure of dataset as well as useful features. We
show the most important and interesting graphs here and
explain the structure we find behind these graphs.

2.1. Close ratio and date

We think that there is some connection between close
ratio and date, to be more specific, a day, a month or a year.
Here, we only show the graph between close ratio and a
specific day in a moth, which is between 1 and 31. To do
this, we calculate the close ratio for each single day. For
example, in the first day of a month, we have n problems
and m of them are closed, then we compute the close ratio m
/ n, to do this, we could get the close ratio of all 31 different
days. From Figure 1, we can see that close ratio of varoius
day is different. For example, in the fifth day of a month,
close ratio is pretty high, while in the twentieth day of a
month, the close ratio is pretty low, the same pattern appears
in the graph of month and year, which means there is indeed
some connection between close ratio and date.

2.2. Open date calendar

We can find lots of interesting information from this cal-
endar. First, its obvious that Stack Overflow is getting more
popular these years. More people ask questions at Stack
Overflow, which aligns with our common sense. Six or
seven years ago, when we had a coding question, we might
search it at Google but now, the most possible way is to ask
question or search for related questions at Stack Overflow.
Another reason is with the computer science burning hot,
more people get to learn programming, which makes Stack
Overflow popular. Another interesting thing is people ask
more question on weekdays than on weekends. Nowadays,

Figure 1. Close ratio’s variation in a month.

Figure 2. How many questions are created on a day.

we know most programmers balance life and work well and
usually they dont work on weekends. So there is few ques-
tions on weekends. Especially, people asked more questions
in the middle of December, 2011. And when we look at that
time, many things changed a lot. For example, C program-
ming language new standard came up and Node.js took off.
Because of new things coming up, people had more ques-
tions about the new techniques. And another reason is peo-
ple would like to getting things done as early as possible
and then would take a great Christmas Day.

2.3. Tag cloud

We can see from Figure 3 the most popular tag is
Javascript and PHP. If a programming language is very pop-
ular or a programming language is hard to learn and use,
people will ask more question about it. We know Javascript
and PHP are these programming languages. With different
JS techniques coming up, Javascript is sweeping the silicon
valley but the grammar of it is strange to the new learners.
And people always argue that if PHP is the best language.
The most important thing from the tag cloud is the variance
of the tag frequency is huge, which makes the tag frequency
a good feature.

2

Figure 3. Tags of questions that people ask, popular tag is bigger.

Figure 4. The number of closed questions per day.

Figure 5. How many questions are closed on a day.

2.4. Number of close questions versus day

We can see from Figure 4, the variance of the number of
closed questions versus day is also big, which means proba-
bly it is a good feature. And in the beginning of each month,
there are more closed questions. People or Stack Overflow
may check if a question is meaningless in the beginning of
each month. And if it is, the question will be closed.

Figure 6. Connection graph of tags that appear together in a ques-
tion.

2.5. Close date calendar

Figure 5 shows almost the same tendency with the open
date calendar. First, we see Stack Overflow is getting more
popular. And more questions are closed on weekdays, in-
dicating people do few work on weekends. However, the
tendency is not as clear as the open date one. An expla-
nation is people ask more questions on weekdays because
they work on weekdays. But they may spend some spare
time(not working time) in answering or closing the ques-
tions. When people are busy working, it is not likely that
they wasting time on Stack Overflow. And the same thing
with the open date one, there were more closed questions
in the December, 2011. When there are more questions
coming up, there are more questions probably being closed.
From the tendency, we will conclude that the date should be
a good and important feature for predicting closeness of a
question. And when doing prediction, we will try to extract
more useful information from the date.

2.6. Tag connection

A problem usually belongs to more than one tags, so we
want to find if some of the tags appear together. Since there
are too many tags, we use the top 25 frequent tags to see
the connection. To do this, we connect two tags if they ap-
pear in a same problem and get the figure. From this figure,
we can see actually two tags appear together because many
fields depend on each o. However, we could still find some
patterns. For example, the net tag appears less together with

3

Figure 7. Closing ratio vs. Tags

Figure 8. Percentage of the four reasons that a question is closed

other tags, which means ”net” problem is relatively inde-
pendent in computer science area.

2.7. Close ratio and tag

A problem may belong to at most five tags, however,
a problem may be closed because it belongs to a specific
tag, so we want to find if the correlation is meaningful. We
get the top 16 popular tags and compute the close ratio of
those tags. From Figure 7, we can see that popular tags also
have high close ratio, especially for PHP and C program-
ming language. We know that they have a verbose and hard
grammar, which makes their close ratio high. So a problem
is more likely to be closed if it belongs to PHP or C tag.

2.8. Reasons of close

A problem will be closed because of four possible rea-
sons, which are not a real question, too localized, off topic
and not constructive. And we can see the proportion of these
four reasons, we want to see if there is a connection be-
tween closed and the reason of close. To get the proportion,
we count the number of problems closed corresponding to

a specific reason, and then compute the percentage of that
reason. From Figure 8, we could see some patterns. For
example, most of problems are closed because they are not
a real question, which is 44%, while only a few questions
are closed because they are too localized, which is 9%.

3. Predicting question status

A question belongs to one of the 5 different categories,
namely “open”, “not a real question”, “not constructive”,
“off topic” and “too localized”, where the latter 4 indicate
the question is closed. The prediction task is to classify a
newly asked question into one of the 5 categories. “Newly
asked” here means that the training set only contains ques-
tions asked prior to this question in terms of question post-
ing time.

One of the challenges of dealing with this dataset is that
the categories are heavily biased. As mentioned in the intro-
duction around 97% of samples are in the “open” category,
while the remaining 4 categories share only about 3% of
the training data. One could easily achieve 97% categori-
cal accuracy by simply predict “open” all the time. In our
experiments, We find that the gradient boosted tree classi-
fier is able to combat such extreme class imbalance due to
the nature of boosting procedure. In the following parts of
this section, we first describe the motivation of using a gra-
dient boosting approach, then briefly describe the gradient
boosted tree algorithm, and finally we present the results
and discussions.

3.1. Gradient boosted classification tree

Boosting frameworks such as Adaboost [4] have the nat-
ural power to tackle the class imbalance problem [7]. This
is due to the fact that it assigns mis-classification costs to
data from each class, forcing the classifier to over-sample
the data from minority classes or under-sample data from
majority classes, since minority classes are more likely to
receive wrong predictions at the earlier stages and hence be
assigned higher weights.

Gradient boosting [5] take a step further from AdaBoost
and combines the idea from gradient descent. Instead of
fitting a new weak learner at each boosting stage to the re-
sampled data based on distribution weights, gradient boost-
ing fits weak learners to fit the residuals of prediction, or
more generally the gradient of the lost function, directly.
This idea allows gradient boosting to fit arbitrary differ-
ential lost functions directly without using proxies of lost
functions of other forms. In our case, multi-class log loss
is used. In the following subsections, we follow [2] from
Tianqi Chen to review the gradient boosted classification
tree algorithm.

4

3.1.1 Regression trees

First, we introduce the algorithm for training gradient
boosted regression trees. Assume we have N training sam-
ples, K trees. For training sample xi, the final prediction ŷi
is

ŷi =

K∑
k=1

fk(xi), fk ∈ F,

where F is the space of functions containing all regression
trees and fk(xi) is the prediction given by the kth regres-
sion tree. Notes that different from AdaBoost, we simply
sum up the predictions given by individual trees (instead of
weighted average in AdaBoost), since at each iteration step,
a new tree is fitted to the residual of the previous accumula-
tive prediction (instead of fitted to re-weighted training data
in AdaBoost).

The total loss function Obj(Θ) is given by the sum of
training loss L(Θ) and model complexity penalty Ω(Θ):

Obj(Θ) = L(Θ) + Ω(Θ),

where L(Θ) is given by

L(Θ) =

N∑
i=1

l(yi, ŷi),

and Ω(Θ) is given by

Ω(Θ) =

K∑
k=1

Ω(fk).

3.1.2 Global view of training procedure

We start by initializing a model of constant prediction

ŷ
(0)
i = f0(xi) = 0.

The training is done additively, that is, we add a model
ft at iteration t, to fit the “residual” produced by the accu-
mulative model from time 0 to time t−1. We will give more
details about the “residual” in the coming section. So, in a
global view, the training steps are as follows:

ŷ
(0)
i = f0(xi) = 0

ŷ
(1)
i = f0(xi) + f1(xi) = ŷ

(0)
i + f1(xi)

ŷ
(2)
i = f0(xi) + f1(xi) + f2(xi) = ŷ

(1)
i + f2(xi)

· · ·

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi)

The model complexity grows linearly with the number
of iterations. Now the remaining issue for train regression
trees is how we find the optimal split for individual trees.

3.1.3 Finding the optimal split for individual trees

The goal is of this section is to find the pseudo-optimal tree
ft for boosting iteration t. At iteration t, we fit ft to the
“residual” produced by the accumulative model. In gen-
eral, the “residual” in a gradient boosted tree is given by the
gradient or in general the residual of any order of Taylor
expansion.

At iteration t, ŷ(t)i is approximated as

ŷ
(t)
i = ŷ

(t−1)
i + ft(xi),

with the loss

l(yi, ŷ
(t)
i) = l(yi, ŷ

(t−1)
i + ft(xi)).

Recall the second order Taylor expansion:

f(x+ ∆x) ' f(x) + f ′(x)∆x+
1

2
f ′′(x)∆x2,

with the corresponding transformation

f(x+ ∆x) ← l(yi, ŷ
(t−1)
i + ft(xi))

x ← ŷ
(t−1)
i

∆x ← ft(xi)

f(x) ← l(yi, ŷ
(t−1)
i)

f ′(x) ← gi = ∂ŷ(t−1) l(yi, ŷ
(t−1))

f ′′(x) ← hi = ∂2
ŷ(t−1) l(yi, ŷ

(t−1)),

l(yi, ŷ
(t)
i) can be written as

l(yi, ŷ
(t)
i) ' l(yi, ŷ(t−1)i) + gift(xi) +

1

2
hift(xi),

and hence the objective function can be written as

Obj(t) =

N∑
i=1

l(yi, ŷ
(t−1)
i) + Ω(ft)

'
N∑
i=1

[
l(yi, ŷ

(t−1)
i) + gift(xi) +

1

2
hift(xi)

]
+ Ω(ft).

With the constant terms removed, our new simplified objec-
tive to minimize for the purpose of calculating ft is

Obj(t)new =

N∑
i=1

[
gift(xi) +

1

2
hift(xi)

]
+ Ω(ft).

Following Tianqi’s notation, we further represent tree ft
as a collection of leaves:

ft(x) = wq(x), w ∈ RT , q : Rd → {1, 2, . . . , T},

5

where w represents the leaf weights, and q the structure of
the tree. The complexity of the tree can be defined as

Ω(ft) = γT +
1

2
λ

T∑
j=1

w2
j

where we penalize the number of leaves (γT) and the L2
norm of leaf weights (1

2λ
∑T

j=1 w
2
j).

Then we regroup the objective by each leaf as the sum of
T independent quadratic functions

Obj(t)new =

N∑
i=1

[
gift(xi) +

1

2
hift(xi)

]
+ γT +

1

2
λ

T∑
j=1

w2
j

=

T∑
j=1

(
∑
i∈Ij

gi)wj +
1

2
(
∑
i∈Ij

hi + λ)w2
j

+ γT

=

T∑
j=1

[
Gjwj +

1

2
(Hj + λ)w2

j

]
+ γT

where the Ij = {i|q(xi) = j} is the instance set of leaf j.
By setting the derivative in (

∑
i∈Ij gi)wj + 1

2 (
∑

i∈Ij hi +

λ)w2
j w.r.t wj to zero, we get the optimal solution

w∗j = − Gj

Hj + λ
,

and the objective

Obj(t)∗new = −1

2

T∑
j=1

G2
j

Hj + λ
+ γT.

In practice, it is not feasible to compute w∗j directly, in-
stead we use a greedy approach as building the ordinary de-
cision trees to find the next split: 1) for each feature, sort the
instances by value; 2) use linear scan to find the best thresh-
old at that feature and finally 3) return the best split found
among all features. Here the Gain of each split is given the
sum of scores of left and right sub trees subtracted by the
score of the unsplitted tree and penalty γ by

Gain =
G2

L

HL + λ
+

G2
R

HR + λ
− (GL +GR)2

HL +HR + λ
− γ.

3.1.4 Regression tree to classification tree

For classification tree of M possible classes, M regression
trees are fitted to each class. For a training sample xi, the
ground truth class probability is given by

yi,j =

{
1 if xi is of class j
0 otherwise

,

and the predicted class probability is pi,j , j ∈ [1,M]. The
loss is calculated as the multi-class logarithmic loss

logloss = − 1

N

N∑
i=1

M∑
j=1

yi,j log(pi,j),

where N is the number of observations. The multi-class
logarithmic loss is a generalization of the binary class log
loss (or cross-entropy loss)

loglossbinary = − 1

N

N∑
i=1

(yi log(pi) + (1− yi) log(1− pi)).

Similar to regression tree, class j’s tree is built as fol-
lows:

ŷ
(0)
i,j = f

(0)
j (xi) = 0

ŷ
(1)
i,j = f

(0)
j (xi) + f

(0)
j (xi) = ŷ

(0)
i,j + f

(1)
j (xi)

ŷ
(2)
i,j = f

(0)
j (xi) + f

(1)
j (xi) + f

(2)
j (xi) = ŷ

(1)
i,j + f

(2)
j (xi)

· · ·

ŷ
(t)
i,j =

t∑
k=1

f
(k)
j (xi) = ŷ

(t−1)
i,j + f

(t)
j (xi),

where f (t)j (xi) is fitted to the residual of class j at itera-
tion t.

3.2. Feature engineering

We use feature of length 38 to represent each sample.
The feature consists of three different categories: text fea-
ture, code feature and feature derived from various tags such
as time.

All feature used are listed as follows:
0. len-code: length of all code segments
1. len-first code: length of first code segment
2. len-first text: length of the first block of text
3. len-last code: length of last code segment
4. len-last text: length of the last text segment
5. len-text: length of characters in all text segment
6. len-title: length of title
7. mean-code: mean length of code segments
8. mean-sentence: mean length of sentence
9. mean-text: mean length of text segments

10. num-code block: mean length of code segments
11. num-digit: number of digits in text
12. num-exclam: number of exclams in text
13. num-final thanks: number of thanks received
14. num-i start: number of sentence starts with “I”
15. num-init cap: number of sentence starts with cap-

ital letter
16. num-lines: number of lines in text
17. num-non word: number or non askii characters in

text

6

Figure 9. A figure shows the importance of different features. The most important five features is f35:user-age

18. num-period: number of period mark in text
19. num-question: number of question mark in text
20. num-sentence: number of sentence in text
21. num-tags: number of tags received
22. num-text block: number of text segments
23. num-url: number of urls used
24. ratio-exclam sentence: number of exclaims

divided by the number of sentences
25. ratio-first code code: length of first code

segments divided by total length of all code segment
26. ratio-first text first code: length of first

test segment divided by length of the first code segment
27. ratio-first text text: length of first text seg-

ment divided by the length of all text segment
28. ratio-period sentence: number of period

marks divided by the number of sentence
29. ratio-question sentence: number of ques-

tion marks divided by the number of sentence
30. ratio-text code: length of all text segments di-

vide by the length of all code segments
31. time-day: integer 1 to 31
32. time-month: integer 1 to 12
33. time-weekday: integer 0 to 6
34. time-year: integer 2008 to 2012
35. user-age: integer, user’s age in seconds
36. user-good posts: number of good posts the use

receive at the posting time of this post
37. user-reputation: user’s reputation at the posting

time of this post

3.3. Experiment and evaluation

We use XGBoost’s [3] implementation of gradient
boosted classification tree. Compared with Scikit-
learn’s [6] implementation, XGBoost is distributed – it can
utilize multiple cores of CPU and scale across different ma-
chines, and thus it is significantly faster than scikit-learn
when running on muliti-core machines.

Figure 10. The changing log lost corresponds to times of iteration.

There are various hyper parameters in a gradient boosted
tree. After multiple cross validation rounds, we report our
results using the following parameter setting:
• bst:max depth: 3
• bst:eta: 0.02
• subsample: 0.01
The performance is evaluated using multi-class logarith-

mic loss. For each test observation, a probability for each
class is predicted. The loss is calculated as

logloss = − 1

N

N∑
i=1

M∑
j=1

yi,j log(pi,j),

whereN is the number of observations, M is the number of
class labels, yi,j is 1 if observation i is in class j and 0 oth-
erwise, and pi,j is the predicted probability that observation
i is in class j.

In the original Kaggle competition, the training data con-
tains questions posted from 2008-07-31 to 2012-07-31, and
the public leader board test data is from 2012-08-01 to
2012-08-14. So, the model is tested with newly posted
questions rather than randomly sampled test set from the
whole dataset. Since Kaggle does not release the label
of it’s public leader board, we first sort our data accord-
ing to creation date of the question and take the first 90%

7

Figure 11. Example of a regression tree: class 0 at iteration 1

data as training set and 10% data as testing set. The train-
ing set contains 3,033,475 samples and the test set contains
337,053 samples.

We train our model on a Amazon AWS c4.8xlarge 32
core machines. The maximum iteration is set to 1000 with
early stopping if the validation error does not decrease in 10
contiguous rounds. The training time is around 1 hour, we
can see the result more clearly in Figure 10.

3.4. Results and discussion

Our best model achieve 0.17786 multi-class log loss in
our 90%-10% time sorted split train / test set. Our result
will rank 26th / 159 if it were submitted to the Kaggle pub-
lic leaderboard. Notes that this is only an approximated
result, since we can not get the label of the pubilc leader-
board, so the train and test set are different from the results
posted on Kaggle. But since the train and test set are spit-
ted by sorted question posting time, the results obtained in
our dataset shall be comparable to the results in the public
leader board. Please refer to the previous section for the
training and evaluation details.

Figure 11 shows an example of a regression tree for class
0 at iteration 1 obtained the boosting procedure.

Here we report the feature importance output by the the
gradient boosted tree. The more frequently a feature is
selected for a node split, the more import that feature is.
There are some interesting observations that we could find
from importance of different features:
• user-age is the most important feature, since a user’s

age could reveal a lot of other information, such as

Rank Team Name Score
1 Malacka 0.15760
2 nbu 0.16114

· · · · · ·
24 neggert 0.17653
25 vikas 0.17766

Our Result 0.17786
26 Anaconda 0.17806
27 Chaotic Experiments 0.17894
28 FZJ 0.17926

· · · · · ·
Basic Benchmark 0.21726

· · · · · ·
158 Words n’ Stuff 5.86013

Table 1. Our result at Kaggle

Index Feature ImportanceRelative importance
35 user-age 3450 0.07644
8 mean-sentence 2493 0.05524
4 len-last text 2123 0.04704
6 len-title 2110 0.04675
5 len-text 1933 0.04283

Table 2. The most import features

user’s reputation, and these features have a strong con-
nection whether a question will be closed or not.
• The second to fifth important features are all about

length attribute of the problem, length of sentence,
length of text and so on. It is obvious that people tend
to close those question which are very verbose and un-
clear, which usually have a very long sentence and ti-
tle.
• num-exclam and num-text block are two very unim-

portant features. It conforms our thinks that these two
features are hard to reveal information related whether
a question will be closed or not.

4. Conclusion
In this project, we answer the prediction question

whether a Stack Overflow question will be closed, and if
yes, why it will be closed. We first use various visualization
techniques to gain useful insights on the dataset. Then we
show how we show that by applying Gradient Boosted Tree
and with extensive feature engineering, this prediction prob-
lem can be solved effectively. Our result is roughly compa-
rable to the 26th / 159 model in the public leader board on
Kaggle.

References
[1] Kaggle predict closed questions on stack over-

flow. https://www.kaggle.com/c/
predict-closed-questions-on-stack-overflow.

8

https://www.kaggle.com/c/predict-closed-questions-on-stack-overflow
https://www.kaggle.com/c/predict-closed-questions-on-stack-overflow

[2] T. Chen. Introduction to boosted trees. https:
//homes.cs.washington.edu/˜tqchen/pdf/
BoostedTree.pdf.

[3] T. C. et al. XGBoost. https://github.com/dmlc/
xgboost.

[4] Y. Freund and R. E. Schapire. A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. Jour-
nal of computer and system sciences, 55(1):119–139, 1997.

[5] J. H. Friedman. Greedy function approximation: a gradi-
ent boosting machine. Annals of statistics, pages 1189–1232,
2001.

[6] Scikit-learn developers. Scikit-learn gradient boosting classi-
fier.
http://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.
GradientBoostingClassifier.html.

[7] Y. Sun, M. S. Kamel, and Y. Wang. Boosting for learning
multiple classes with imbalanced class distribution. In Data
Mining, 2006. ICDM’06. Sixth International Conference on,
pages 592–602. IEEE, 2006.

9

https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html

