Assignment 1. Movie reviews sentiment analysis

[Report]

Sokolov Aleksey
University of California San Diego
sokolov@ucsd.edu

1. INTRODUCTION

Sentiment analysis is a challenging subject in machine learn-
ing. People express their emotions in language that is often
obscured by sarcasm, ambiguity, and plays on words, all of
which could be very misleading for both humans and com-
puters. Purpose of this project is to predict emotion of a
review by understanding meaning and relationships between
words.

The dataset used in this project consists of 50,000 IMDB la-
beled movie reviews, specially selected for sentiment analysis
in the publication [1]. The sentiment of reviews is binary,
meaning the IMDB rating < 5 results in a sentiment score of
0, and rating >=7 have a sentiment score of 1. No individual
movie has more than 30 reviews.

Typical training data looks similar to the following sample:
8196_8; 1; "
I dont know why people think this is ...”.

Each review has the following fields:

e id - Unique ID of each review
e sentiment - Sentiment of the review

e review - Text of the review

Originally the data contained some HTML tags, stopwords
and punctuation symbols. To make it suitable for analysis
we use BeautifulSoup library to remove the HTML tags. We
also use re package for dealing with regular expressions to
remove punctuation, though we still keep part of it, since
we are tackling a sentiment analysis problem, and it is pos-
sible that "!!!” or ”:-(” could carry sentiment, and should be
treated as words. Finally we get list of English-language
stop words from python Natural Language Toolkit and fil-
ter all of those from our data corpus and utilize Stemming
package to treat same meaning words as one word.

Figure 1: Average lengths of the reviews

On average each review consists of about 121 words. 10
words most frequently found in the reviews and number of
corresponding occurrences are: movie - 24955, film - 19213,
one - 13135, like - 11238, even - 7684, good - 7419, bad -
7394, would - 7036, really - 6262, time - 6208.

However this doesn’t give us any useful information about
data, since both of the labels contain those words. There-
fore we divide the reviews into two halves according to their
labels, find several hundreds most frequent words for both
of them and throw away the words which appeared to be in
both halves (see Table 1).

This approach lets us visualize some features of our data by
plotting labeled reviews as points of different colors. Each
of two axis on the following plots represent the number of
occurrences of particular word in a review (see Figures 77-5).

Figure 2 shows us that a movie has higher chances of neg-
ative rating if the review contains word "worst”. However
word "better” doesn’t guarantee positive rating even though
it is one of the most frequently occurring words in positive
reviews.

On Figure 3 we are analyzing our data on two negative
sentiment words dimensions and observe significantly lower
amount of positive reviews, number of which decreases even
more as the reviews have larger numbers of one or both of
the words.

We can observe interesting difference between Figure 4 and
Figure 5. They represent the same features of the data -
“excellent” and "awful” dimensions. However the words fre-

Sentiment words count
Positive Negative Positive Negative
ever - 2733 many - 2909 works - 848 unfortunately - 931
acting - 2435 show - 2861 city - 790 crap - 895
plot - 2433 great - 2640 strong - 767 guess - 888
say - 2414 man - 2517 sometimes - 746 flick - 816
better - 2382 worst - 2479 late - 730 decent - 815
m - 2039 life - 2427 age - 699 annoying - 795
bad - 1907 still - 2282 stories - 696 tries - 790
excellent - 1681 love - 2152 simple - 695 ridiculous - 789
wonderful - 1370 | best - 2096 roles - 693 hour - 784
nothing - 1301 awful - 1556 james - 665 god - 764
perfect - 1241 poor - 1481 relationship - 656 | gore - 752
loved - 1087 boring - 1476 episodes - 656 save - 746
amazing - 1058 stupid - 1428 fantastic - 654 attempt - 735
favorite - 962 terrible - 1391 david - 652 car - 733
heart - 959 waste - 1359 murder - 646 except - 732
today - 934 worse - 1248 brother - 646 blood - 731
brilliant - 926 supposed - 1186 | experience - 642 obviously - 730
enjoyed - 879 oh - 1084 oscar - 628 thinking - 720
highly - 870 horrible - 1046 including - 627 ok - 714
fine - 857 couldn - 1042 musical - 625 lack - 698
Table 1: Sentiment words count
quencies in the figures were calculated in different manner. N
For the first we evaluated each individual review indepen-
dently of other reviews and for the second we concatenated
all reviews of each movie into corresponding large review.
Joined reviews tend to give us mixed distribution of both B, wib .
features and the separated reviews have clear difference in g S ’
dimensions. This fact means that when several users are re- i o
viewing the same movie the chances are that their judgment I s
and rating of the movie will be different, which means the - i)
reviews will contain both positive and negative sentiment i % ;‘",{Q!;" s O -
words with high probability. o B .

Reviews by frea

bter

Figure 2: Separated reviews ”better-worst” frequen-
cies.

After initial exploratory data analysis we were able to iden-
tify some features of the data and their dependencies. As we
proceed further it turned out that the accuracy of all mod-
els greatly depends on the way we extract and represent the
features.

2. PREDICTIVE TASK

Figure 3: Separated reviews “awful-worst” frequen-
cies.

Reviews by frequencies of

(A

axcalent

Figure 4: Separated reviews excellent-awful” fre-
quencies.

Predictive task to be studied on this dataset is identifying
the sentiment of a review based on its text content. For this

Reviews by frequencies of the two words

B

e

£ 2

-

5 T

F
gl

Figure 5: Reviews joined by movie excellent-awful”
frequencies.

purpose we need to explore feature extraction methods, find
out which features are more relevant than the others and
identify the most efficient classification algorithm for our
dataset among support vector machine, logistic regression,
random forests and neural networks approaches. The accu-
racy of the algorithms will be compared on the randomly
selected cross validation set and than on the test set.

The straight forward way for building word representation
for any natural language processing task is to use the bag
of words approach. We first build a fixed dictionary of the
5,000 most frequent tokens for the number of features, but
ignore the 40 most rare terms to avoid attaching too much
importance to individual movie titles, since any movie in the
collection is limited to at most 30 reviews. Thus we create
5000-dimensional feature vector for our every labeled review
to use it on the reviews comparison. Using the training
feature vector we will fit it to the several most reasonable
classifiers and validate the model’s predictions on the test
set of 25000 labeled reviews. We also use cross-validation
set of 15% the size of the training set to tune parameters of
our model.

Afterwards we will try more sophisticated feature extraction
techniques as n-grams, tf-idf or neural networks based vector
space in case bag of words will not provide low enough error
rate.

3. LITERATURE

The original publication our dataset comes from also tried to
predict review binary label but used more complex model for
that purpose [1]. It presents a model that uses a mix of un-
supervised and supervised techniques to learn word vectors
capturing semantic termadASdocument information as well
as rich sentiment content. The proposed model can leverage
both continuous and multi-dimensional sentiment informa-
tion as well as non-sentiment annotations. The reason for
such a mixed model is that unsupervised vector-based ap-
proaches to semantics can model rich lexical meanings, but
largely fail to capture sentiment information that is central
to many word meanings and important for a wide range
of NLP tasks. The model combines latent semantic analy-
sis, latent Dirichlet allocation and vector space model. One
of the datasets similar to ours is Rotten tomatoes dataset,
which was collected and utilized for sentiment categoriza-

tion by Pang and Lee [2]. They presented three types of
approaches for support vector machine - done-vs-all, regres-
sion and metric labeling and considered positive-sentence
percentage as similarity measure.

The state-of-the-art techniques for our data type we ex-
plored include support vector machines, random forest [5],
logistic regression for classifying a review and n-gram mod-
els, term frequency-inverse document frequency, neural net-
work algorithms for feature extraction.

Feedforward neural network language model[4], implemented
in word2vec library follows four-gram neural net language
model architecture. It can be used in our project for the pur-
pose of extracting features representing them by continuous
bag-of-words or continuous skip-gram model. The training
is done using stochastic gradient descent, backpropagation
and softmax in the output layer. Though the model is not
efficient for purely getting word vectors, but rather for deep
semantic and syntactic analysis of the review corpus.

Random forest is method for classification that constructs
a multitude of decision trees at training time and outputs
the classes, correcting decision trees’ habit of overfitting to
training set.[5] The training algorithm applies bootstrap ag-
gregating to tree learners. Given a training set X = z1,,z»
with responses Y = y1,,yn, it repeatedly selects a random
sample with replacement of the training set and fits trees
to samples. After training, predictions for unseen samples
2’ can be made by averaging the predictions from all the
individual regression trees on a’.

4. FEATURES

Features extraction turned out to be the critical part of
this assignment, because different classification algorithms
resulted in extremely close accuracy on the same feature
representation formats. Since all data we’ve got is the re-
views texts, rating will always be the function of the review
words of different weights, depending on a model. First of all
we cleaned the data by removing irrelevant tags, stopwords,
punctuation and stemming the words with similar meaning.
Then we have chosen the most frequent words to represent
our feature vector. This naive "bag of words” model can only
provide moderate results, since it assumes independence of
all the words in the review and doesn’t take word order into
account.

The model accuracy can be improved by applying n-gram
to analyze contiguous sequences of the words. So far we are
classifying a review based on the most frequently appearing
words in the dataset, assuming that it won’t cover only a
tiny portion of words and that all words are equally rele-
vant, both of which are not true. So even better approach
will be to use term frequency-inverse document frequency
model, which assigns weight to every word based on it’s
frequency. This way we consider rare words more relevant
and don’t need to remove stopwords which can potentially
contain some useful information any more. Finally we are
utilizing the word2vec library to build the feature vector for
us.

S. MODEL AND RESULTS

We are fitting every type of feature vector we received from
bag of words, word2vec, n-gram and tf-idf to logistic regres-
sion, support vector machine, random forest algorithms. We
used sklearn implementations, tuned the model parameters,
but didn’t bring any changes into their algorithms, so we
will skip their theoretical description. To increase our clas-
sifiers performance we applied principal component analysis
to reduce the data dimensionality. It didn’t work well, since
reducing the variance of this data on 1% only reduced the
feature vector by 20%, which is not that significant. How-
ever normalizing the feature vector helped a lot, especially
for support vector machine which took several times more
amounts of time to converge. To avoid overfitting and apply
grid search for parameter tuning we used randomly selected
the cross-validation set.

We originally expected the support vector machine to give
the best results as it is often considered the-state-of-art ap-
proach for classification problems. However we discovered
that all three approaches have almost the same error rate
when applied to the same feature vectors (though SVM does
take much more time). More than that all of them achieved
almost 100% accuracy on the test set, which means that the
data features dimensions are easily separated. So the accu-
racy of the classification depends primarily on the feature
extraction models. Among classification algorithms the ran-
dom forest approach provided slightly higher result and low
execution time, so we only use it for further classification of
feature vectors representations.

Also we expected the word2vec model created in Google to
outperform simple models as n-gram and tf-idf. But it per-
formed slightly better than the bag of words model. Our
assumption is that our corpus of data is not large enough
for this library to achieve highest results - its performance
is best on much larger datasets, consisting of many millions
of entries. However it gave us some insight on the semantic
properties of the data and distinguished the words senti-
ments. For example it distinguished that the word "awful”
is similar to words “terrible, horrible, dreadful, laughable,
horrendous, ridiculous, pathetic” with decreasing probabili-
ties, which is pretty amazing result.

Final results of our random forest classifier on the test set
are 95.4% for feature vectors extracted using tf-idf, 89.7% -
for bigram, 82.1% - for bag of words approaches.

I Figure 1 - “EN

2lojol+]-aE Zoomec 1903 ye0.02

Figure 6: Learning curve of random forest + bag of
words models

+ Bigram)

05 050 6% 0600

o
Tatnng exampies

Figure 7: Learning curve of random forest 4 bigram
models

m Figure 1 - oEN

2lojoq+-a@ [T

Figure 8: Learning curve of random forest + tf-idf
models

6. CONCLUSIONS

In this project we studied the quality of vector representa-
tions of words derived by various models on a collection of
rated IMDB movie reviews. We observed that it is possi-
ble to get high quality word vectors using very simple model
architectures, compared to the popular neural network mod-
els(word2vec). We discovered that the accuracy of the classi-
fication depends primarily on the feature extraction models.
We were also able to identify some semantic and sentiment
information of the words. Best result were achieved using
combined random forest and tf-idf models.

7. REFERENCES

(1] Andrew L. Maas, Raymond E. Daly, Peter T. Pham,

Dan Huang, Andrew Y. Ng, and Christopher Potts.

(2011). "Learning Word Vectors for Sentiment

Analysis.” The 49th Annual Meeting of the Association

for Computational Linguistics (ACL 2011).

Pang and L. Lee. 2005. Seeing stars: Exploiting class

relationships for sentiment categorization with respect

to rating scales. In ACL, pages 1154A3124.

Ronan Collobert and Jason Weston (2000). Natural

Language Processing (almost) from Scratch. In Journal

of Machine Learning Research 1 (2000), pages 1-48.

(4] Mikolov, Tomas, Chen, Kai, Corrado, Greg and Dean,
Jeffrey. "Efficient Estimation of Word Representations
in Vector Space.” CoRR abs/1301.3781 (2013)

[5] Breiman, L. 2004a. *Consistency For A Simple Model

2

(3

Of Random Forests,” Technical Report 670, Statistics
Department University Of California at Berkeley,
September 9, 2004.

(6] Christopher M. Bishop (2006). Pattern Recognition and
Machine Learning. Springer. p. 205. ”In the terminology
of statistics, this model is known as logistic regression,
although it should be emphasized that this is a model
for classification rather than regression.”

[7] Cristianini, Nello; and Shawe-Taylor, John; An
Introduction to Support Vector Machines and other
kernel-based learning methods, Cambridge University
Press, 2000. ISBN 0-521-78019-5

[8] Recursive Deep Models for Semantic Compositionality
Over a Sentiment Treebank, Richard Socher, Alex
Perelygin, Jean Wu, Jason Chuang, Chris Manning,
Andrew Ng and Chris Potts. Conference on Empirical
Methods in Natural Language Processing (EMNLP
2013).

[9] M. J. Pazzani and D. Billsus, "Content-based
recommendation systems,” in The adaptive web, pp.
325-341, Springer, 2007.

[10] A. Ansari, S. Essegaier, and R. Kohli, "Internet
recommendation systems,” Journal of Marketing
research, vol. 37, no. 3, pp. 363-375, 2000.

(11] D. D. Lewis, R. E. Schapire, J. P. Callan, and R.
Papka, "Training algorithms for linear text classifiers,”
in Proceedings of the 19th annual international ACM
SIGIR conference on Research and development in
information retrieval, pp. 298-306, ACM, 1996.

[12] S. Salas and E. Hille. Calculus: One and Several
Variable. John Wiley and Sons, New York, 1978.

[13] Deniz Demir, Olga Kapralova, Hongze Lai, "Predicting
IMDB Movie Ratings Using Google Trends,”
Dept.Elect.Eng,Stanford Univ., California, December,
2012

