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ABSTRACT
For this project, I attempted to characterize how the per-
ceived quality of wine relates to its age. To do this, I per-
formed analysis on the Cellar Tracker data set of wine re-
views. Through exploration of the data set I found that
wine does not age consistently. There was a noticeable shift
in the trend of review scores as the wines’ age increased. I
performed various forms of regression analysis in an attempt
to characterize this shift. Most importantly, I tried to deter-
mine the point at which this shift takes place, as it could be
considered the optimal time to drink the wine (or the point
of diminishing returns on quality). I came up with a model
to this end and was able to obtain reasonable estimates for
this value.

1. INTRODUCTION
It is often said that a fine wine will just get better with age,
but is this really the case? And if so, in what manner does
it improve? There are many potential improvement models
that are possible. If it improves strictly linearly or exponen-
tially, it would benefit a person to wait as long as possible
before drinking a bottle of wine. Also, as a result, you would
expect all wine to eventually converge to the highest rating
as time passed.

There is another question that must be considered. Does the
improvement of wine overtime follow a consistent trend? Is
there a point in the life of a bottle of wine where it begins
to see diminishing returns on its improvement? It might
even be the case that quality might begin to decline as time
continues to pass. If this is true, it would not be of benefit
to save a bottle of wine indefinitely.

In the preceding case, one where quality would eventually
decline, it is of great benefit to characterize where there is a
shift in the aging trend. This point would represent a best
time to drink the bottle of wine. Even in the event that the
later aging trend is still an increasing one (though just at a
slower rate), this would represent the point of diminishing

returns. As the cellar space for a large wine owner can be
a precious resource, this point could be used to determine
what bottles should be consumed sooner to make room for
younger bottles that would benefit more.

Seeing as this optimal age would be interesting and useful
to know, it is what I decided to attempt to find. Through
the remainder of this document, I walk you through the
process I followed to develop a model for this goal. In Section
2 I describe the data set I have chosen to use. Section 3
describes that task I am attempting to solve. Section 4
contains information of previous literature relating to the
data set and creation of a model. Sections 5 and 6 describe
the data set features I used and the steps I took to evolve
my model. Finally, Sections 7 and 8 summarize my results
and conclusions.

2. THE DATA SET
The data set I chose to explore is one from the Cellar Tracker.
Cellar Tracker is a website that caters to wine enthusiasts.
It allows a user to catalog and manage their collection of
wine. Additionally, it contains a large collection of reviews
of wine that have been submitted by users. It is these user
reviews that make up the data set.

The data set as a whole consists of 2,025,995 reviews made
by 44,268 different users over 485,179 unique wines. Each
entry contains expected meta data, such as a wine and user
name/ID with a time stamp. There is some additional meta
data on the wine, mainly the variant and year. Each review
has the option of giving the wine a point score, with a value
up to 100. Finally, there is a text body to the review that
was written by the user. The text provided is relatively small
(compared to some of the beer reviews) with a median word
count of 29. Also, unlike the beer reviews, there are no
subcategory scores.

I found this data interesting because of the presence of both
a wine year and a post time stamp. What I quickly dis-
covered was that not all of the reviews contained complete
information. It was possible for a reviewer to select ’N/A’
for either the wine year or the point score. As I felt this
information was necessary, I created a filtered data set com-
prised only of reviews with valid information. The size of
this reduced data set was 1,521,471 entries.

As I understood it might be useful to not think of all wines
as equivalent, I wanted to know how much variety there was



Figure 1: A graph of scores for a single variant.

Figure 2: A graph of scores for a single variant.

in terms of styles. There turned out to be 752 different vari-
ants present in the data. Many of them were very obscure
styles. There were only 79 that had more than 1000 reviews.
These were the variants I chose to focus on. I knew having
variants with so few reviews might cause some problems fit-
ting a model, but I chose this threshold to see how robust my
models were. The largest of the variants, ’Pinot Noir’, had
202,714 reviews. This was plenty of data to try to identify
a trend.

The following section describes the continuation of my data
exploration as I formulated a task.

3. THE PREDICTIVE TASK
Having identified the primary wine variants in the data set,
I next needed to determine if there was an interesting trend
present. I started by grouping the data into its variants. I
then decided to visually inspect the data for interesting for-
mations. Figures 1 to 3 each show the score of a single wine
variant graphed against the age of the wine. I used partially
transparent points to better emphasize the concentration of
data.

The figures had some amount of variation, but the general
trends seemed the same. There was a period where there
was a high spread within the scores, but gradually the con-
centration of lower scores moved upward. The top scores

Figure 3: A graph of scores for a single variant.

remained high in this period, then started to sag a bit down
around an average value that was lower than the top.

The graphs of the data, by variant, confirmed my suspicion
that the affects of aging on wine does not follow a single
consistent trend. It looked like there was an initial period
of ramp up followed by a convergence to an average value.

My main interest was creating a model to find where this
trend transition occurred. I also needed to be able to de-
termine that my model was valid. To that end, I took the
grouped data set and broke each group into a training and
test set. I put half of the reviews in one set and half in the
other. Noticing that the reviews were ordered by user, I put
the odd entries in the training set and the even in the test.

To determine if my model was good, I used the mean squared
error (MSE). I first created a few baseline measurements.
From the training set, I determined the mean and created a
linear regression solution using the wine age in the feature
vector. The MSE of these models on the test data served
as my baseline for comparison with my model. My model
must be constructed in such a way that the transition point
I am looking for is readily measurable.

4. RELATED WORK
It is important to also discuss the origin of the data set.
This data was collected for use in [3]. The topic of the work
was to create a model that took into account user experience
level to model reviews. They leveraged the fact that there
was a large set of time series of reviews by the same users.
This allowed them to create an expertise model on a per
user basis.

There were other similar data sets that were also used in [3].
There were two sets of beer reviews, one from BeerAdvocate
and one from RateBeer. Additionally, there were two sets
of Amazon reviews (fine foods and movies). This data was
used in the same way as the Cellar Tracker data, to use a
user expertise model to improve predictions.

Additionally, the beer data sets were also used in [2]. They
leveraged the fact that the review scores were split into mul-
tiple parts. By analyzing the review text, they were able to



associate certain text with certain scores. This allowed them
to use text analysis to predict missing scores.

There were naturally many other review based works (the
Netflix challenge [1] came to mind), but my chosen task did
not have similar goals. I needed to be able to identify the
transition point between two trends. To do this, I needed
to model these trends either independently or jointly. The
best way to do this was through regression analysis.

The simplest form of regression analysis is linear regression
[6]. In this type of analysis, you model the relation between
an input feature vector and an output by finding a set of lin-
ear parameters Θ. The model is in the form: y = ΘX, where
X is the input feature and y is the output value. The value
of Θ can be determined by solving a set of linear equations
using linear algebra. The resulting values are linear param-
eters that minimize the MSE. This type of analysis was a
useful tool in the deriving of my model.

Another type of regression I found might be useful was non-
linear regression [5]. This type of analysis also solves for
weights to fit a function to data. However, this input func-
tion does not need to be linear. This approach can be much
more powerful as it can be used to model phenomenon that
does not have a linear structure. The catch is that you
must understand the data well enough to guess what class
of function is a good fit. Solving for this type of model
does not have a closed solution. The algorithms focus on an
iterative approach that eventually converges to an optimal
value. One such algorithm I ran across for this work was
the Levenberg-Marquardt algorithm[4]. This algorithm uses
a form of gradient decent to find a solution that minimizes
the MSE for the function.

5. FEATURE IDENTIFICATION
I briefly mentioned some of the features I used in the earlier
sections, but I shall go over them in more depth here. There
are a few features that were important to this analysis.

The variant of the wine must be used to separate the differ-
ent types. As mentioned above, I divided the data set into
smaller sets grouped by variant. My motivation was that
different wines will have different aging characteristics. It
was certainly not expected that you would want to save a
sauvignon blanc as long as you would a pinot noir. It would
not be possible to extract any meaningful trend if all the
data was grouped together. As seen in the figures above,
the individual variants do allude to the trends I am looking
for.

The review scores were the next necessary feature. The score
represented the measure of quality. By assessing how the
scores changed over time, I could find the optimum wine
age I was looking for.

The final important feature was naturally the age of the
wine. Each data item had a year associated with it. There
was also a time stamp for the review. The time stamp was
in a Linux format. I first converted this to a usable date
and time. I treated the wine year as if it was bottled on
the first day of the year. I used the difference between the
time stamp and the wine year as the wine age. To add a

little more precision, I also used the month. It did not seem
reasonable to use any more precision, given how coarsely
the bottling date was estimated. I found that the wine age
varied from 0-290 years with an average of 5.986 years.

As a small note, the data set contained a few time stamp
errors. There were a couple of time stamps that had negative
values. These values were present in the raw data set. It was
most likely the result of an error during collection. There
were also a couple of items that had times the preceded the
wine year. These were thrown out.

These three classes of features together were what was needed
to derive a model for my task.

6. MODEL DERIVATION
In this section, I describe the different models I tried to
accomplish my task. All of these models were able to run in
reasonable time on the full data set. Not all these models
were successful. This will only describe the reasoning and
setup of the models. See the Results section for the model
evaluations.

6.1 Binned Linear Regression
My first attempt at a model was an application of linear
regression. As stated above, I used a simple linear regression
model as part of my baseline. That version used a feature
vector in the form of [1.0,age]. For this model I used a longer
feature vector where each entry represented an age bin. For
each entry in the vector, the value would be zero unless the
age of the wine for that data item fell into that entry’s bin.

The first 25 feature entries were each one year bins. This
was followed by 5 five year bins and a final bin for anything
greater than 50 years. This was indeed a lot of entries per
feature and there was definitely a risk of over fitting (as will
be shown later). A solution might have been to create fewer,
larger bins. However, even if this would have yielded some
results it would have been at too coarse a granularity to be
useful for my task.

The idea was to examine the resulting theta vector from the
solution and look for either the maximum value of theta or
where there was a relative maximum. This critical point
might be a potential solution to my task.

6.2 Two Part Linear Regression
This next model was inspired by wanting to find the location
where two data trends diverge. This model was also powered
by linear regression, but it worked differently than either of
the other implementations.

The idea was to form a model that used one linear regression
solution for the first part of the data and a second linear
regression solution for the rest. The assumption was that
there was some way to divide the data set (on the time axis)
that splits it into two separate models. The feature vector
was the same as for the baseline model, [1.0,age]. The main
trick was finding out the optimal point to split the data.

I started by marching through time (the age of the wine).
At each interval I would split the data set into two, with



Figure 4: A set of dampened oscillation functions,
provided by wikipedia.org.

everything below the current age in the lower set and every-
thing above the current age in the upper set. I would then
solve for the theta weight vector for both the lower and up-
per sets. With these vectors I would calculate the MSE for
the training set.

For my first attempt at this model, I would keep track of the
calculated MSEs as I stepped through time and would stop
when I found a minima, using this as my solution. My initial
assumption was that there would only be one. I quickly
discovered that this was not the case. My next attempt at
the model stepped through and located the global minima.

For my final attempt at this model, I recorded all the local
minima as I stepped through time. In order to figure out
which of these solutions was the best, I used the one with
the least MSE for the testing set.

The motivation for this model was that it created a clear
division between the two trends in the data. The solution to
my task (finding an optimal time to drink the wine variant)
would be the wine age used to divide the data set for the
given solution.

6.3 Curve Fitting
Additionally, I wanted to see if I could get a better fit by
trying to use a non-linear regression solution. A solution of
this type tries to fit a specified non-linear function. For my
solver I used the curve fit function from the scipy package.
This function allows you to provide a fitting function and an
initial set of parameter and uses the Levenberg-Marquardt
algorithm to find an optimal solution. I decided to try a
number of different functions to fit.

My initial thought was to use a function from physics. The
solution form I was looking for reminded me of a dampened
oscillation function. Figure 4 shows a set of oscillation func-

Figure 5: A binned linear regression solution.

tions with various dampening parameters. The though was
that this function type would allow for the presence of a
peak and then converge towards a lower value. It was hoped
that the location of this peak would be the optimal wine age
I was looking for.

The function was of the form:

exp(−γ ∗ x) ∗A ∗ cos(φ ∗ x− α) + β

The other concept I was interested in trying was similar
to my two part linear regression model. I used the curve fit
function to fit piecewise functions. I first tried a combination
of a quadratic function and a linear function. The function
was designed so that it would be continuous. Both functions
shared the same y intercept and were shifted (by the solver)
an equal amount. The idea was to have a function with a
quadratic ramp up that at some point became linear. The
point where the functions connected would be considered
the point of the trend shift and, thus, the optimal wine age.

The other function I tried was also piecewise. This one,
however, started as a linear function and was connect to a
logarithmic function. The thought was that the connection
between these two functions would represent the start of the
trend shift, which would be the point I was looking for.

7. EVALUATION AND RESULTS
The above models were trained and tested. The following
subsections describe the model evaluations.

7.1 Binned Linear Regression
This was the first model I attempted. As stated above, it
used a feature vector of length 31 to solve against the wine
scores. The results for three wine variants are shown in
Figures 5, 6 and 7. The resulting solutions do not present
any consistent trends. As an artifact of having such small
bins, there was a relatively high degree of variance between
adjacent bins. I attempted to find both the highest theta
component and the first relative maxima, but neither proved
to be a solution point to my task.

Additionally, Figure 8 shows the MSE of the binned linear
solutions for all 79 wine variants compared with the baseline



Figure 6: A binned linear regression solution.

Figure 7: A binned linear regression solution.

Figure 8: MSE comparison for binned linear model.

Figure 9: A two part linear regression solution.

Figure 10: A two part linear regression solution.

mean and linear models on the testing data set. The vari-
ants are arranged from most reviews (left) to least reviews
(right). The binned linear regression solution is clearly very
over fitted to the training data as the size of the data sets
decrease. This model did not prove useful in the accomplish-
ment of my task.

7.2 Two Part Linear Regression
As the previous model did not meet my needs, I moved on
to try a two piece linear regression model. Figures 9 and
10 show solutions for two wine variants. The figures clearly
show the division of two linear trends within the data.

As stated above, I tried three different methods to determine
the optimal division of the data sets. I used the first minima,
the global minima, and the best of all minima on the test
set. It was now necessary to determine if there models were a
good fit. Figure 11 shows a graph of the wine variants’ MSE
on the testing set for the three methods and the two baseline
methods (mean and single linear models). The models do
indeed beat the baseline MSEs in almost all cases. To clarify
the difference, Figures 12 and 13 graph just the difference
between the three two part models and the mean and linear
baselines.

It is important to note that the three models produced a
similar MSE for the earlier variants and started to vary more



Figure 11: Graph of MSE of two part linear models
with baselines.

Figure 12: Graph comparing two part model with
mean baseline.

Figure 13: Graph comparing two part model with
linear baseline.

Figure 14: Graph with fitted dampened oscillation.

Figure 15: Graph with fitted dampened oscillation.

for the later ones. Since the variants were arranged from
most data items to least data items, this showed that a cutoff
threshold of 1000 (500 test, 500 train) was probably too low
for these models and resulted in a lower quality fit. Even so,
the best of the three methods still produced a fit that beats
the baselines for almost all variants.

This model appeared to be a viable solution. It was shown
to fit the testing data better than the baselines, reducing
the probability of over fitting. What was also good about
this model was that the point of division between the two
linear pieces was very clear. This division age was a good
candidate for what I was attempting to find.

7.3 Curve Fitting
The two part linear regression model appeared to give me a
useful result, but I wanted to try a non-linear model as well.
I did this as a check to make sure my linear assumption
was not too ridged. To this end, I tried the three mod-
els: the dampened oscillator, the quadratic-linear piecewise
function, and the linear-log piecewise function.

I first attempted to use a dampened oscillation function.
The problem I ran into was that the function had too many
degrees of freedom. This resulted in odd fittings that, though
locally optimal, did not reflect the trend I was looking for.
Even after fixing some of the parameters, the best results I



Figure 16: Graph with fitted quadratic-linear func-
tion.

Figure 17: Graph with fitted quadratic-linear func-
tion.

got are reflected in Figures 14 and 15. My goal was to use
the function maximum to find the optimal wine age. How-
ever, these graphs do not fit in a way that allows that. This
was not the function I was looking for.

I next tried to fit two different piecewise functions. Figure
16 shows a graph with a quadratic-linear function fitted to
it. Figure 17 shows a graph with a fitted linear-log function.
Both functions seem to fit the data trend fairly well.

To determine if the models were reasonable, I compared
them to the baseline values on the testing set. Figure 18
shows the two models compared to the linear regression
baseline over the 79 wine variants. With the exception of two
variants, both these models beat the baseline linear MSE.
The two outliers are again likely caused by over fitting on
these smaller data sets. The graph shows that though both
models are valid, the linear-log fitting is better than the
quadratic-linear fitting. I used the linear-log model as my
potential solution from the curve fittings.

7.4 The Best Solution
I now had two potential models to use for my task. I needed
to determine which was best suited. I first checked to see if
there was a dramatic MSE difference between the two mod-

Figure 18: Comparison of curve fit MSE to linear
baseline.

Figure 19: Comparison of linear-log MSE to best
two part linear regression.



Figure 20: Comparison of linear-log optimal age to
best two part linear regression.

Figure 21: Graph with Optimal Age.

els on the test set. Figure 19 shows the difference between
the curve fit MSEs and the best two part linear regression
fitting. The linear-log model is shown to have a reasonably
similar MSE to the two part linear model.

It was then a matter of determining which of these models
would allow me to accomplish my task. Using the point of
discontinuity as the optimal wine age, I decided to compare
the models’ solutions. Figure 20 shows the difference be-
tween the optimal curve fit value and the optimal two part
linear value. There is a very large difference between most
of the values.

To explain this difference, I went back to the graph of the
linear-log curve fit solution (Figure 17). I realized that even
after the function transition, the log function still increases
at a reasonable rate before leveling off. This largely increas-
ing portion of the log function was causing an underestima-
tion of the optimal age value. The age at the start of the log
trend was being used, but the logical solution would really
be the point where the log sufficiently slowed its increase.
The point I used as my solution was therefore not the cor-
rect one. Also, finding an actual solution from this model
was not a strait forward task. Though the model may be a
good fit to the data, it did not help me accomplish my task.

Figure 22: Graph with Optimal Age.

Figure 23: Graph with Optimal Age.

Figure 24: Graph with Optimal Age.



Figure 25: Graph with Optimal Age.

The two part linear regression model, however, fit the data
and had a very clear solution point. For those reasons, I
chose this to be the model for my solution. To provide visual
validation to my solution, Figures 21 through 25 are the top
five wine variants with their optimal age indicated. For all
of these graphs the optimal age was found to be the point
right as the upper end of the ratings began to decline. This
matched my expectations of a solution.

Additionally, I have included a table at the end of the paper
which contains the optimal age for the top 20 wine variants
(by review abundance).

7.5 Implications
Trend Proportion (79) Proportion (40)
+/+ 2>1 0.088608 0.000000
+/+ 2<1 0.658228 0.750000
+/- 0.177215 0.225000
-/+ 0.050633 0.025000
-/- 0.025316 0.000000

: Theta trend for two part linear model.

It is also worth discussing some implications of the model.
The solution consists of two theta vectors, each containing
a y intercept and a slope. By looking at the slope values, we
can infer some information on the trends in the data. If both
are increasing, and the second is larger than the first, the
wine will get better faster after it passes the optimal age. If
the second is smaller, there will be diminishing returns after
the optimal age. If the first slope is positive and the second
is negative, quality will begin to decline after the optimal
age. If the opposite, quality will start improving. In the
event both slopes are negative, the quality will perpetually
decline.

The above table shows the proportion of the variants that
fall into each of these categories. There is one column for
the top 79 variants and another for the top 40. Since the
lower variants have less data items, it gives an idea of how
tolerant the model is to a smaller amount of training data.
The trends seem more reasonable when just looking at the
40 larger data sets. With only one exception, all of those

data sets either show an increase that begins to have dimin-
ishing returns or an increase that leads into a decline. This
matched my intuition from the initial data exploration. It
also showed that the odder trend combinations likely came
as a result of fitting to too little data.

8. CONCLUSION
This project has been a complete lesson in data mining. I
found a data set and, through exploration, identified a task
to examine. Using the features of the data, I derived and
tested models to try to accomplish my goal.

The cellar tracker data set provided an interesting challenge.
Through the features present, it gave me the opportunity to
use peoples’ tastes (through reviews) to attempt to char-
acterize the effect of age on the quality of wine. I created
several models in an attempt to find one that represented
the data trends I observed. Through testing and validation,
I was able to eliminate the models that were unfit or did not
suit themselves to my task. In the end I derived a model
that, given a sufficient amount of data, produced a plausible
solution to the optimal age to drink a wine variant.

Variant Optimal Age
Pinot Noir 3.50
Red Bordeaux Blend 30.00
Cabernet Sauvignon 4.25
Chardonnay 4.00
Red Rhone Blend 7.00
Syrah 17.00
Riesling 8.25
Zinfandel 3.5
Red Blend 6.00
Shiraz 8.00
Sauvignon Blanc 7.5
Merlot 3.75
Sangiovese 8.25
Nebbiolo 10.75
Tempranillo 4.50
Malbec 3.25
millon-Sauvignon Blanc Blend 7.00
Sangiovese Blend 5.50
Champagne Blend 11.00
Grenache Blend, Grenache 6.25

: Optimal age for top 20 variants.
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