
Text based rating predictions from beer and wine reviews

Benjamin Braun
Department of Computer Science and

Engineering
University of California, San Diego

bebraun@cs.ucsd.edu

Robert Timpe
Department of Computer Science and

Engineering
University of California, San Diego

rtimpe@cs.ucsd.edu

ABSTRACT
Predicting ratings from text reviews is a very challenging
text mining problem with a multitude of practical applica-
tions on online review platforms. This task involves both
a sensible feature extraction from the review text as well
as creating a model with a high accuracy. For this project,
we deployed and compared a number of natural language
processing methods for extracting features from three large
datasets of wine and beer reviews. We used these features
to create and compare the performance of classification and
regression models to predict fine grained ratings.

Keywords
Data mining, sentiment analysis, Naive Bayes, Ridge Re-
gression

1. INTRODUCTION
The goal of our project is to predict ratings from review text.
Online reviews are an important factor for users to decide
between products. They are extensively used for movies, on
online shopping sites, restaurant reviews and food critique
platforms. Most platforms allow users to submit a written
review as well as a numeric label, for example stars or points
on some scale.

We tried a number of models to predict ratings from beer
and wine reviews, but we eventually settled on linear re-
gression and naive Bayes classification. These models are
relatively simple, but often achieve reasonably good perfor-
mance in practice. In addition, their simplicity allows them
to efficiently scale to huge training sets. This was an im-
portant criteria for this project because the datasets we use
have millions of reviews, so training an inefficient model may
not be practical.

2. DATA SETS
To compare the quality of our prediction for different do-
mains, we are using data sets collected from popular beer
and wine rating sites.

2.1 CellarTracker
The cellar tracker dataset consists of 2,025,995 wine reviews.
Each review has 9 different features: wine name, wine id,
wine type, wine year, review score, review time, the user
name and user id of the reviewer, and the text of the review.
Of these features, we are mostly interested in the reivew
score and review text, so this is the focus of our exploratory

analysis. Firstly, we are interested in the distribution of
ratings. Figure 1 shows this distribution. The scale goes
from 50-100 and is described in [1]. Despite the fact 80-
85 is considered an average wine, most of the ratings are
clustered around 85-95 range. The mean rating is 88.8 with
a standard deviation of 4.2.

Figure 1: The distribution of wine ratings

As part of our exploratory analysis, we also looked at some
properties of the reviews. As figure 2 shows, there is some
correlation between review length and wine rating (i.e. longer
reviews tend to go with better ratings). We are also inter-
ested in some more advanced statistics about the reviews.
Figures 3, 4, and 5 show the number of adverbs, adjectives
and nouns vs the wine rating. These figures show some cor-
relation between the number of adverbs and adjectives and
the rating, and a somewhat weaker correlation between the
number of nouns and the rating. We also looked at other
parts of speech (such as pronouns) and found very weak
correlations. Overall, this shows that we can expect to find
some predictive power by looking at review text.

Finally, we also looked at how the ratings varied depending
on the time of year. Figure 6 shows the average wine rating
by month. There is some small variation, with peaks in the
early summer and early winter. This indicates that there
may be some difference in the type or quality of wine that
people drink in different times of the year that will allow us
to make predictions from the reviews.

1



Figure 2: Length of review vs wine rating Figure 3: Number of adverbs vs wine rating

Figure 4: Number of adjectives vs wine rating Figure 5: Number of nouns vs wine rating

2.2 BeerAdvocate
The BeerAdvocate data set consists of 1,586,602 beer re-
views. Each review has information about the beer: name,
style, ABV, id, and brewer id, as well as review information:
reviewer name and time, review text, overall rating, and 4
subratings: aroma, palate, taste, and appearance. Figure 7
shows the distribution of overall ratings. The average rating
is 3.8 with a standard deviation of 0.7.

We also looked at some of the language properties of this
dataset. Figure 9 shows the length of the review vs the
overall rating, while figure 8 shows the number of adjectives
vs the overall rating. There is a slight correlation between
review length and overall rating, with a similar but slightly
smaller correlation between number of adjectives and overall
rating. We also made similar plots for other parts of speech
(omitted for brevity) which showed similar correlations. We
expect that this relationship between reviews and ratings
will allow us to make predictions about the rating from the
review text.

2.3 RateBeer
The RateBeer dataset includes 2,924,127 from 40,213 users
which is the whole dataset of the website up to November
2011. Similarly to the BeerAdvocate dataset, most of the re-
views also include aspect ratings for the same four aspects.
We applied the same analysis to this dataset as for BeerAd-
vocate. The analysis did not reveal significant differences,
so we do not provide any graphs for this dataset.

3. PREDICTIVE TASK
Our main predictive task is to predict review scores from
review text. This can be framed as a classification prob-
lem by splitting the scores up into ranges. For the wine
data, we binned the scores as described in [1]. The Beer-
Advocate data has ratings in increments of .5 from 0-5. We
binned these ratings by multiplying by 2 to get ratings in
the range 0-10 inclusive. The RateBeer ratings are integers
in the range 1-20 inclusive. We used these ratings directly
as categories.

2



Figure 6: The average wine rating by month Figure 7: Distribution of BeerAdvocate ratings

Figure 8: Number of adjectives vs beer advocate rating
Figure 9: Length of review vs BeerAdvocate overall
rating

In addition to the review score, we are also interested in
predicting other review properties from the text. We also
predict the time of year and beer style from the review text.
We didn’t try to predict wine style because while the Cellar-
Tracker data has the wine variant, it is too fine grained to be
used for classification and we had no good way of translating
it into more general categories.

3.1 Evaluation of model
We evaluate our model in several ways. In addition to clas-
sification accuracy, we also look at confusion matrices to
get a more detailed picture of what kind of classification er-
rors our model makes. For regression, we also translate the
continuous prediction to a classification based on the previ-
ously introduced bins. Additionally we calculate the mean
squared value when comparing results from the data set. To
compare results with different variance, we also calculate the
coefficient of determination R2.

After preprocessing our data, we randomly shuffle the re-

views for each of the datasets and use 90% of the reviews for
our training set. The remaining 10% are never used during
the training of the model unknows or the hyperparameters
and exclusively for the final testing.

3.2 Relevant baselines
The simplest baseline for each of these predictive tasks is
a model that always predicts the most common label. The
frequency of each label is shown in figure 10 for the Cellar-
Tracker data and in figure 11 for the BeerAdvocate data.
The two most common labels in the RateBeer dataset are
14 and 15, with frequencies 14.8 and 14.4, respectively (the
full table is omitted for brevity).

For regression, the baseline is just the mean value of the
data. This would equal an R2 of zero.

Unfortunately, our results were not as good as similar results
from the related work described in Section 4.

3



3.3 Assessing validity of the predictions
To asses the validity of our model, we will compare our pre-
diction accuracy to the baselines. Additionally, we will use
the trained features of our model for qualitative analysis.

4. RELATED WORK
The RateBeer and BeerAdvocate datasets have been used
previously in a number of papers. In [8], this data, among
other datasets, is used to learn attitudes and attributes by
taking advantage of the separate ratings for multiple aspects
that are present in the dataset. They introduce a new model
to that identifies the described aspect and sentiment per
sentence in the review. In a first step, the model identi-
fies sentences that describe a particular aspect out of the
rated aspects of a product by learning sentiment neutral as-
pect words. For these aspects, a rating is predicted using
aspect specific sentiment words. This outperforms previous
approaches while being scalable to large datasets.

In [9], similar datasets, including the RateBeer, BeerAd-
vocate and CellarTracker datasets were used for a recom-
mender system that also takes into account the current ex-
perience level of a user. They use a latent-factor model with
parameters evolving independently for each user to model
the individual progress of a user. This outperforms mod-
els that just include temporal changes for the community as
whole.

Ganu et al. [5] also try to identify sentiment from free-form
text reviews to improve recommendation accuracy. They
manually annotate a set of sentences from restaurant reviews
with category and sentiment labels to train a SVM to cat-
egorize sentences int the dataset. They then learn weights
for each (category, sentiment) tuple using regression. Their
regression-based text ratings are not very accurate, but they
are still able to improve recommendations to users with the
text compared to using just the numerical rating.

Qu et al. [12] also address the problem of predicting numeric
ratings from a user’s product review text. They argue that
unigrams are unable to copture more complex expressions,
for example negation, while N-grams of words occur too in-
frequently in most training corpuses which lead to extremely
sparse vectors that do not work well for predictions. Instead
they map sentences, for example Not particularly amazing,
to opinion triples, containing an opinion root, modifiers and
negation words. They use a subjectivity lexicon to identify
opinion roots and negation words and learn weights for the
opinions triples using a constrained ridge regression. Be-
cause their opinion triples are domain independent, they

Category Frequency
50-69 0.31
70-79 2.55
80-85 13.07
86-89 35.37
90-93 40.62
94-97 7.54

98-100 0.54

Figure 10: The frequency of each wine rating cate-
gory

Rating Frequency
0 0.00044

0.5 0.0
1 0.69

1.5 0.82
2 2.41

2.5 3.69
3 10.44

3.5 19.02
4 36.73

4.5 20.45
5 5.75

Figure 11: The frequency of each BeerAdvocate
overall rating

combine this with a unigram model from a domain specific
corpus, also trained using ridge regression. They evaluate
this on Amazon reviews from multiple categories and show
that their opinion model improves the mean squared error
compared to n-gram models.

In [6] Joshi et al. describe how they used text reviews of
movies to predict opening weekend revenues. They extract
three types of text features from the movie’s critic reviews:
n-grams, parts-of-speech n-grams, and dependency ralations
using the Stanford parts-of-speech tagger and parser. The
predictions obtained from a linear regression based on text
features are similar to predictions from metadata alone.

In [7] Kibriya et al. describe multinomial naive Bayes and
some modifications to improve its performance.

5. FEATURES
Most of the reviews in the datasets we used contain a more
or less elaborate text review of varying length. We focus our
work on features that can be obtained from the review text
as this is available across all review platforms.

Before anything else, we do some preprocessing to clean up
the review text. We noticed that many of the wine reviews
had some HTML tags in them. We decided to strip these
tags so we would be dealing with pure text. However, it
would be interesting, as an area of future work, to try and
incorporate these tags into a model. Many of the tags are
unlikely to have predictive value, but some (such as bold
and italics tags) may provide useful information.

While stripping HTML tags removed some noise from the
data, some of the reviews are still difficult to parse. For
example, there are many examples of words joined by punc-
tuation (and especially ellipsis) that our parser is unable to
handle. Unfortunately, cleaning up this kind of data would
be a very involved process, so we left them alone.

From the review text we extract the number of words in the
review as a feature. To get more accurate word tokens from
the text, we use the Python natural language processing
library spaCy [3] to tokenize the text into words. Addition-
ally, we use stemming on the words to condense the dictio-
nary by identifying the root words. spaCy uses the WordNet
lexical database [4] for this. For example, the phrase don’t

4



will results in the tokens do and not. We expect this to
significantly reduce the dictionary size, so that we get lower
dimensional features for more accurate predictions.

We also obtain a part of speech classification for each of
the tokens, e.g. classifying the words into 17 categories, e.g.
NOUN, VERB, ADV,... The classification is based on the
Google part-of-speech tag set [11].

From the word stems, we generate a feature vector for each
review using the bag-of-words model. We limit the dictio-
nary to the 200.000 words provided by spaCy. This elim-
inates misspelled words and keeps our feature vector rela-
tively small to avoid overfitting. To also capture more com-
plex phrases in the reviews, we also generate bigrams from
the tokenized review corpus and select the 500 most frequent
bigrams as additional features.

Stainingly dark, coating the glass. Nose and taste of
graphite, iron, minerals. Brooding and tannic, with
good balance. Quite distinctive. We will look forward
to opening our second, and last, in two years.

’dark’, ’coat’, ’glass’, ’taste’, ’graphite’, ’iron’,
’mineral’, ’brood’, ’tannic’, ’good’, ’balance’, ’distinc-
tive’, ’will’, ’look’, ’open’, ’second’, ’last’, ’year’

Figure 12: An example of a wine rating before and
after processing

Because we assume that most of the predictive power of our
model comes from the adjectives, nouns, verbs, and adverbs
in the review text, we also try reducing our bag-of-words
feature to only include the words that were tagged as these
parts of speech. Figure 12 illustrates this on an example of a
wine rating. This should provide a very similar effect as fil-
tering out stop words, a common optimization technique to
make the training faster. We will evaluate the effectiveness
of this technique in Section 7.4.

To make computation on these high dimensional vectors
more efficient, especially considering the large size of our
datasets, we take advantage of the fact that most reviews
are relatively short and therefore result in a highly sparse
matrix. We convert our feature vectors to a compressed
row storage matrix. This provides significant performance
improvements when training a linear regression model or a
support vector machine.

In addition to features generated directly from the review
text, we also extract the current the experience level of a
user by determining the number of reviews the reviewer has
written so far.

We assume that the language in the reviews will differ be-
tween the different beer or wine variants that are being re-
viewed For this, we categorize the beer reviews into reviews
for three different beer styles: lager, ipa and stout. We do
this by adding beers that contain the word lager, ipa or stout
in the field beer/style to the respective category. Other beer
styles are ignored. While we might miss some of the beers in
these categories, this should mostly avoid falsely categorized
beer styles.

6. PREDICTION MODEL
6.1 Naive Bayes
One of the models we used was a naive Bayes model. We
started with the simplest implementation of a multinomial
naive Bayes model [7]. That is, we measured the prior prob-
ability of each class and estimated the posterior distribution
of words over each class using Laplace smoothing. We then
represented documents using a bag of words model and made
predictions based on the estimated parameters.

In addition to the basic naive Bayes model, we also tried
a number of improvements. One method we tried was to
shrink the vocabulary by ignoring words that appear with
approximately the same frequency in each class. The idea
is that these types of words will have little to no predictive
power because they are equally common in each type of re-
view. To do this, we first measured the frequency with which
a word appeared in each different class. We then computed
the mean and standard deviation of these frequencies for
each word and removed words where none of the frequencies
differed by λ times the standard deviation. λ is a hyper-
parameter that we set using some of the training data as a
validation set.

We also tried naive Bayes with a bigram instead of unigram
model. So instead of posterior distributions over individual
words, we had posterior distributions over each neighboring
pair of words in the training set. We hoped that this extra
context would improve the accuracy of the model.

Finally, we tried stemming using the spaCy library. This can
be thought as another way of reducing the voacbulary size.
But rather than removing common words, we map words to
their root words. The goal is to reduce noise without while
still preserving the meaning of words. This is accomplished
using the lemma property from the spaCy api [2].

Even with these improvements, the naive Bayes model still
has a number of weaknesses. It completely disregards the
structure of the text. It also ignores relationships between
words and assumes that the features (i.e. word counts) are
independent of each other. Unsurprisingly, classification ac-
curacy suffers as a result of this simplifications.

On the other hand, these simplifications allow for generally
good performance. Despite working in very highly dimen-
sional space (i.e. the size of the vocabulary), this model
achieves good performance. Using this model allowed us to
use training sets with millions of data points, which may not
have been possible with a more complicated model. Given
the large size of the data sets we used, this was a highly
desirable property. The only performance issue we had with
this model was using the spaCy library. Parsing millions
of reviews was a relatively slow operation, even though the
model itself is very efficient.

Despite its simplicity, the naive Bayes model is widely used
for text classification, which is why we decided to use it.
We also wanted to analyze our model to draw interesting
conclusions about the data set, as described in section 7.
This can be easily accomplished with a naive Bayes model,
for example by looking at the posterior distributions, but is
not always possible or easy with a more complex model.

5



6.2 Support vector machine
We also tried to do classification using a multi-class support
vector machine with an radial basis function. While SVM is
traditionally a binary classifier, they can also be applied to
multi-class classification using a one-against-one approach.
The problem is that this requires us to train a classifier for
each pair of classes, resulting in O(c2) classifiers. We tried
to apply the library implementation from scikit-learn [10].
However, we could not train the SVMs from enough samples
to get significant predictions. We assume that our features
are too high dimensional, given the number of training sam-
ples we have, to train it on our Laptops.

6.3 Linear regression
Another model that we implemented was linear regression.
Again we started with the simple model introduced in class

Xθ = y

with X being our sparse matrix of text features, θ are the
weights associated to each words, and y is the vector of
predicted ratings.

However, without any regularization, the model has a strong
tendency to overfit. To improve this model, we evaluated a
number of different regularization techniques. We evaluated
an l1 regularizer that also minimizes the the l1 norm of the
weights in addition to the mean squared error:

arg min
θ

=
1

#samples
‖y −Xθ‖22 + λ‖θ‖1

This leads to a model with a sparce coefficient vector, reduc-
ing the number of non-zero weights. This did not perform
well for our datasets and effectively only predicted the mean
rating.

Alternatively, we also tried l2 regularizer:

arg min
θ

=
1

#samples
‖y −Xθ‖22 + λ‖θ‖22

This method is also known as ridge regression and was pro-
posed in some of the related work we studied, for example
in [12], and proved to provide the most reliable prediction
while avoiding the issue of overfitting.

A model with both an l1 and l2 regularizer also ran into the
same issues as with simple l1 regularlization.

To fit the hyperparameter λ, we did a grid search over a
range of parameter values. For this, we split up our training
data using k = 5-fold cross-validation. While this did not
significantly change the model performance compared to the
default value of λ = 1, we did get a minor improvement in
accuracy.

One advantage of the ridge regression model is the good
performance when training the model. By taking advantage
of the sparsity of the input data, we had no issues with
memory capacity. We tried multiple solvers and found that
an iterative solver gave the best training performance. We
trained the model from the whole training set of more than
a million reviews. The model does not require any manual
labels on the data and can even cope with the fact that some
of the reivews are written in other languages than English.

Figure 13: The distribution of wine ratings

The trade-off is that the correlation between features and
rating is often not linear, as assumed by the model. Further-
more, our model fails to capture more complex expressions.
For example, even with bigrams or trigrams the negation in
Did not get much fruit in front will not be associated to the
fruit. Our model would give this a positive sentiment due to
the positive correlation of fruit. Due to this, our prediction
accuracy is not that good and we are unable to explain all
of the variance in the ratings.

A benefit of the ridge regression is that after training the
model, we get a feature vector with a positive or negative
sentiment rating for each word or bigram.

6.4 Support vector regression
As an alternative to linear regression, we also implemented
and tested a support vector regression model. However, we
ran into the same issues with this as for the support vec-
tor machine for classification. We were not able to train
the model from a reasonable amount of samples to get solid
predictions.

7. RESULTS
In the following section, we summarize and evaluate the re-
sults of our predictions.

7.1 Comparison of text features
We first compare the effectiveness of different methods of
feature extraction for both a Naive Bayes and a linear re-
gression model.

7.1.1 Naive Bayes
Figure 13 shows the classification accuracy of the basic naive
Bayes model compared to various improvements, on each of
the 3 datasets. In each case, the model was able to slightly
outperform the simplest baseline described in section 3.2.
There was also relatively little difference in performance be-
tween each of the improvements (which are described in sec-
tion 6). Reducing the vocabulary size seems to be the most

6



successful improvement. This makes sense, because reduc-
ing the vocabulary size can significantly reduce the amount
of noise in the data. Common words like “the”, “a”, etc. are
very unlikely to have much predictive power. But their fre-
quency may easily vary independently of whether the review
is positive or negative. This noise can impact the model’s
predictions, and so one can expect that ignoring these words
will improve accuracy. The lack of success of the bigram
model was unexpected, but not entirely surprising. After
all, two-word pairs do not give much more context than one
word pairs. The accuracy of the model with stemming is
somewhat more surprising. We expected stemming to be a
more significant improvement over the base model.

Figure 19 gives an example confusion matrix for the Rate-
Beer dataset. Looking at this figure, it is clear that the prior
probabilty distribution is playing an important role in the
model’s performance. The prior distribution simply reflects
the distribution of ratings, for example as shown in figures
10 and 11. In the case of the RateBeer dataset, most of
the ratings are in the range of 10-16, which is also where the
model is making most of its predictions (discussed further in
section 7.3). However, there is some interesting information
in the posterior distribution as well. For example, some of
the words with highest probability of appearing in a Rate-
Beer score of 20 (i.e. the highest possible score) are ”sweet”,
”chocolate”, ”dark” and ”best”. These are words that one
would reasonably expect to be associated with very good
reviews. Unfortunately, looking more closely at this list of
most probable words reveals other words which are less likely
to have good predictive value, such as “a”, “beer”, and “this”.
These are likely just words that appear frequently across all
types of reviews. The fact that these words have not been
removed from the vocabulary represents a failure of the “re-
duced vocabulary” improvement, which is meant to remove
such words. Most likely, these words happened to appear
significantly more or less frequently in one or two types of
reviews, and so they were not removed. This also explains
why this improvement didn’t produce a bigger gain in accu-
racy.

7.1.2 Ridge Regression
In Figure 14, we compare the performance of the regression
based model by means of different text feature extraction
methods based on review score prediction fro the RateBeer
dataset. None of the methods significantly outperforms any
of the others. The basic bag of words features when using
stop words perform the worst with an R2 of 0.408. Not
removing stop words lead to a minor improvement, proba-
bly because we did not include a length feature, so the stop
words substituted for that without carrying any actual sen-
timent. Both, stemming and using bigrams lead to further
improvements. However, the model is clearly too simple, as
it only explains about 40% of the variance in our dataset.

7.2 Domain specific sentiment
The feature vector of the trained regression model associates
a weight to each word in the reviews. The weight should be
a direct indicator of the sentiment of a word for the specific
domain of reviews. In Figure 15 we show the words with
the highest weights for wine reviews. Most of the words
are domain independently positive like perfection, awesome,

Stem
ming

, N
o S

top
, 1

No S
tem

, N
o S

top
, 1

No S
tem

, N
o S

top
, 2

No S
tem

, S
top

, 2

No S
tem

, S
top

, 1

0.36

0.38

0.40

0.42

0.44

R
²

Preprocessing methods regression performance

Figure 14: Comparison of different preprocessing
methods for regression

magnificent, amazing, while others like weiner, pritchard are
clearly domain specific (in this case wineyards).

Beer reviews use a clearly distinct language for positive sen-
timent, as shown in Figure 17. In comparison, the words
for negative sentiment are much more similar. As shown
in Figure 16 for wine reviews and Figure 18 for beer re-
views, both domains seem to agree on a similar language
for reviewing bad beers and wines. When we inspected the
weights, we also noticed that negative words usually carry
a much stronger negative penalty. For example in case of
the wine ratings, while undrinkable has a weight of −7.13,
perfection only has a weight of 2.52. A likely explanation is
that positive adjectives occur more often with opinion mod-
ifiers that relativize the expression, which is not captured
by our model.

7.3 Comparison of Naive Bayes and Regres-
sion

Our two models had very similar classification performance
on each of the 3 datasets. This makes sense because they
both represent data in the same way. In each case, the text
is represented as a bag of words and relationships between
words are ignored. Figure 19 shows the confusion matrix for
the naive Bayes model, while figure 21 shows the confusion
matrix for the linear regression model, both on the RateBeer
dataset. In each case, nearly all of the predicted labels are in
the 10-16 range. This makes sense, because approximately
75% of reviews in the training set are in this range. So both
of the models are generally accurate, but fail to precisely
differentiate between reviews that are very similar (i.e. a 14
vs a 15). This is apparent in the confusion matrices. Both
models are making some number of correct predictions, and
a high number of incorrect predictions in nearby categories.
Figure 20 shows the confusion matrix of linear regression
on the CellarTracker data. It shows very similar behavior
to the RateBeer dataset, albeit with fewer categories. The
other confusion matrices all have similar behavior and are
omitted for brevity.

7



Figure 15: Positively weighted words in wine reviews Figure 16: Negatively weighted words in wine reviews

Figure 17: Positively weighted words in beer reviews
from RateBeer

Figure 18: Negatively weighted words in beer reviews
from RateBeer

Overall, both of the models are good at predicting approxi-
mately how good a review will be, but fail to reliably differ-
entiate between reviews that are very similar. It would also
be interesting to try these models on a more evenly balanced
dataset. As described in section 2, all of these datasets have
far more positive than negative reviews. It would be inter-
esting to see how these models perform on a dataset with
an approximately equal number of positive and negative re-
views. This would make it harder for the model to simply
always predict that a review is good. But this is not how
these datasets are distributed, and we wanted to focus on
analyzing real data. After all, if most of the reviews fall into
a small range of the rating scale, then any real-life applica-
tion of these models will likely have to differentiate between
such reviews.

As shown with the CellarTracker dataset, we can artificially
improve accuracy by reducing the number of categories. But
the overall behavior of the models doesn’t change, so there
is no real reason to do so. And again, we wanted to explore

the performance of the models in a realistic scenario, which
means keeping the same categories as the original data.

7.4 Information content in different parts of
speech

We also evaluated which parts of speech were most useful
for predicting the review score. To do this we used the pre-
viously described parts-of-speech tagger while creating the
bag-of-words features. We then filtered out words that did
not match our current parts-of-speech filter. As shown in
Figure 22, our predictions are most accurate when includ-
ing when including all of the words. However, limiting the
words to only include nouns, adjectives, verbs and numbers
did result in nearly the same accuracy. As expected, adjec-
tives are most useful as they carry most of the sentiment.
We also noticed that the accuracy of the tagger was not
perfect. Especially when filtering out all nouns, adjectives,
verbs and numbers, the remaining words with strong weights
were nearly exclusively misclassified ones.

8



Figure 19: Confusion matrix of RateBeer ratings
using naive Bayes with reduced vocabulary

7.5 Temporal changes in review language
Once we decided on the models, we also applied them to
the task of predicting time of year from review text. We
split the reviews into 4 categories (Winter, Spring, Summer
and Fall) to do classification. We choose to split the re-
views by season rather than month in the hope that seasonal
trends/differences would be more significant than monthly
ones.

The naive Bayes classifier with a reduced vocabulary achieved
an accuracy of 29.25% on the wine data. This is only slightly
better than always guessing “Spring”, which appears 26.58%
of the time in the training data. The classifier almost always
predicts “Winter” or “Spring” (the two most frequently oc-
curring seasons), which indicates that it is not learning very
much about which words predict which seasons (i.e. it is
mostly making predictions based on the prior, rather than
posterior distributions). Looking at most probable words in
the posterior distributions supports this theory. For exam-
ple, many of the top words in the “Winter” and “Summer”
posteriors are the same. This includes words like “and”,
“the”, and “with”. There are some differences between these
distributions, but there are simply too many non-predictive
words with high probability for these differences to be ef-
fective in making predictions. A more effective method of
reducing vocabulary size and ignoring words like “the” and
“and” may result in more accurate prediction.

7.6 Review language for different beer vari-
ants

We also used our model to identify the beer variant that
is described in the review. For this, we trained a classi-
fier to identify lagers, IPAs and stouts based on the text in
the reviews. To make this task more interesting, we filtered

Figure 20: Confusion matrix of wine ratings classi-
fied using regression

these words from the reviews. For training, we had between
200,000 and 300,000 reviews from each beer style. Our clas-
sifier had an accuracy of 0.870. Characteristic words used
to describe stouts were for example blackness, oat or noir
while reviews of IPAs were classified based on words like
grapefruit. However, we many of the predictive words were
explicit beer names, which might have simplified this task.

8. CONCLUSION
We tried a number of different models for predicting beer
and wine ratings from review text. Of these, the two most
interesting and successful were linear regression and naive
Bayes.

The naive Bayes model was not hugely successful at pre-
dicting ratings from reviews. It was able to outperform the
most basic naive classifier (always predict the most com-
mon label) largely thanks to its prior distribution. But its
posterior distribution seems to be too noisy to make much
more accurate predictions. Manual examination of the pos-
terior distributions revealed that many of the most probable
words for each class were unlikely to have much predictive
value (i.e. words like ”the”, ”and”, and ”with”). Any words
that did have predictive value were likely drowned out by the
noise of these very common words. We attempted to remove
such words from the vocabulary by ignoring words that ap-
peared with similar frequencies across each class. However,
our method was not able to completely eliminate such words
and only gave small improvements in accuracy. It would
be interesting to compare our method to other methods
for downweighting common words, such as replacing word
counts with the TFIDF [7]. Other changes to the model
gave even smaller improvements in accuracy.

9



Figure 21: Confusion matrix of RateBeer ratings
classified using regression

The linear regression model also did not provide very ac-
curate predictions. Training the model was very efficient,
easily scaling up to the full dataset of more than a million
reviews on our laptops. However, the model is too simple to
capture the complex structure of the text when using uni-
grams or bigrams as features. Natural language processing,
in particular stemming, improved the model only to a minor
extent. To gain significant improvements, a richer model like
Latent Dirichlet Allocation model might have been better.
But even with a linear regression, we were able to distin-
guish positive and negative sentiment words and get within
reasonable accuracy of predictions.

9. REFERENCES
[1] Cellartracker wine rating system. http://www.

cellartracker.com/content.asp?iContent=34.
Accessed: 2015-02-20.

[2] Spacy api.
https://honnibal.github.io/spaCy/api.html.
Accessed: 2015-02-22.

[3] Spacy project website.
https://honnibal.github.io/spaCy/. Accessed:
2015-02-20.

[4] C. Fellbaum. WordNet. Wiley Online Library, 1998.

[5] G. Ganu, N. Elhadad, and A. Marian. Beyond the
stars: Improving rating predictions using review text
content. In WebDB, volume 9, pages 1–6, 2009.

[6] M. Joshi, D. Das, K. Gimpel, and N. A. Smith. Movie
reviews and revenues: An experiment in text
regression. In Human Language Technologies: The
2010 Annual Conference of the North American
Chapter of the Association for Computational
Linguistics, pages 293–296. Association for
Computational Linguistics, 2010.

All W
ord

s

Nou
n, 

Adj,
 Verb

, N
um

Only
 Adj

Only
 N

ou
n

Only
 Verb

Not 
Nou

n, 
Adj,

 Verb
, N

um
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

R
²

Comparing parts-of-speech

Figure 22: Regression using different parts of speech

[7] A. M. Kibriya, E. Frank, B. Pfahringer, and
G. Holmes. Multinomial naive bayes for text
categorization revisited. In AI 2004: Advances in
Artificial Intelligence, pages 488–499. Springer, 2005.

[8] J. McAuley, J. Leskovec, and D. Jurafsky. Learning
attitudes and attributes from multi-aspect reviews. In
Data Mining (ICDM), 2012 IEEE 12th International
Conference on, pages 1020–1025. IEEE, 2012.

[9] J. J. McAuley and J. Leskovec. From amateurs to
connoisseurs: modeling the evolution of user expertise
through online reviews. In Proceedings of the 22nd
international conference on World Wide Web, pages
897–908. International World Wide Web Conferences
Steering Committee, 2013.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[11] S. Petrov, D. Das, and R. McDonald. A universal
part-of-speech tagset. arXiv preprint arXiv:1104.2086,
2011.

[12] L. Qu, G. Ifrim, and G. Weikum. The bag-of-opinions
method for review rating prediction from sparse text
patterns. In Proceedings of the 23rd International
Conference on Computational Linguistics, pages
913–921. Association for Computational Linguistics,
2010.

10

http://www.cellartracker.com/content.asp?iContent=34
http://www.cellartracker.com/content.asp?iContent=34
https://honnibal.github.io/spaCy/api.html
https://honnibal.github.io/spaCy/

	Introduction
	Data sets
	CellarTracker
	BeerAdvocate
	RateBeer

	Predictive Task
	Evaluation of model
	Relevant baselines
	Assessing validity of the predictions

	Related Work
	Features
	Prediction Model
	Naive Bayes
	Support vector machine
	Linear regression
	Support vector regression

	Results
	Comparison of text features
	Naive Bayes
	Ridge Regression

	Domain specific sentiment
	Comparison of Naive Bayes and Regression
	Information content in different parts of speech
	Temporal changes in review language
	Review language for different beer variants

	Conclusion
	References

