
Dan Rozenberg
darozenb@eng.ucsd.edu
A53071493

CSE 255 Assignment 1

1. IDENTIFY DATASET
I will use the Amazon Review database, aquired from
http://snap.stanford.edu/data/web-Amazon-links.html.
I have downloaded the individual files. On aggregate, there
are 35,358,900 reviews. To reduce processing time and need
for tighter memory management, I have decided to use only
a fraction of this data. More specifically, I am using 0.5%
of the total, resulting in over 170 thousand reviews. I will
keep the category proportion the same, however, forming the
datum with the first 0.5% reviews of each category. During
modeling and testing, this reduced data will be separated
into training, and validation.

Let’s start by looking at the highest level of data. There are
176,779 reviews. The star rating (or star score) is distributed
as on

We can see a clear bias towards high scores, specifically, a 5
star rating. This is consistent with Potts’ [1] findings. Let’s
open this up by category and see if the pattern holds.

We can immediately see that the bias holds for all categories,
except for office products. Overall, categories do not seem
to matter much to the average score distribution.

If we look at average length per score, we see that scores
at the both extremes of the scale are significantly smaller
than the ones in the middle. One possible explanation is
that such products could have been great or terrible, were
it not for a series of reasons, which are explained at greater
lengths by the reviewer.

Opening this data up by categories, we see that some types
of products have rather lengthier reviews than other, in par-
ticular books, movies, videogames and musics, which can
be considered more subjective. The distribution of length
throughout scores, however, remains mostly unchanged.

Next, let us look at individual words that compose all of
reviews. All together we have 215,494 different words

If we look at the top 5 words, we will see that these are
extremely common, neutral words which do not add much
information. Looking at the least common words also re-
veals another issue, many words appear with very small fre-
quency: these are either proper nouns, rare words, or mis-
spelled words. It is clear that this data will need cleaning if
we are to use words as predictors.

It is reasonable to assume that different scoring reviews will
have different phrasing and word usage. As a crude first test
I got the 1000 most common words in each score category.
For each group of 1000 words, I removed any words that were
not exclusive to that group. Looking at the top 20 words
yields some interesting and sometimes amusing results:

1-star reviews have monopoly on words such as ”avoid”,
”garbage”, and ”returned”. 2-star reviews have words such
as ”confusing”, ”potential” and ”sadly”. 3-star reviews have
words like ”fair”and 5-star, words like ”incredible”and ”mas-
terpiece”.

At the same time, we see problems with the methodology:

while strongly positive or negative reviews have more unique
influential words, things get fuzzy when they get closer to
neutrality, since the language gets more nuanced. Some
scores did not even have enough unique words (out of 1000)
to make a top 20.

Finally, wording seems very dependent on category: printers
are the main focus of hatred at Amazon, securing the top
unique word for 1-star reviews, (which would explain why
office products have such higher incidence of that score).
Some very positive words seem to be related to specific books
or actors, like ”Bruce” and ”jazz”. Highly praised books,
such as George Orwell’s 1984 appear very frequently as 5-
star reviews. It could be that a review is an opinion on that
book, or is comparing another book to it, as a form of praise.

It is reasonable to assume, therefore, that words have differ-
ent effects, depending on the product category.

2. IDENTIFY PREDICTIVE TASK
In their recent ”New Avenues in Opinion Mining and Sen-
timent Analysis” article, Cambria [2] and the others make
a distinction between opinion mining and sentiment analy-
sis. According to them, the first relates to polarity detection
(positive vs. negative) and the second deals with emotion
recognition (such as love, hate, desire, etc...).

Since it is a much simpler and easier problem, I will at-
tempt to perform opinion mining on the Amazon reviews.
Although simpler, this problem still could be divided into
two categories. The first is simply classifying an opinion
as positive/negative/neutral (polarity), while the somewhat
more ambitious alternative is to detect the intensity of this
opinion—in a scale of 1 to 5, for example.

My main goal in this assignment will be to find the polar-
ity of reviews. The model used does have the ”side-effect”
of predicting the of 1 to 5 intensity as well. The evalua-
tion, however, will consider only the polarity for counting
successes and failures.

On the matter of evaluation, it will be done in Amazon
reviews not seen by the model during training. Whenever

the model and the actual data agrees on polarity, this will
count as a ”hit”. When they disagree, it will count as a
”miss”.

When it comes to comparison baselines, the simplest one
would be random chance and naive classification. The first
just guesses at random what the polarity should be. The
second always chooses the polarity that is majority in the
training corpus.

Finally, we can look at the literature for a seeing how the
model implemented by me, and other’s implementation of
this and similar models compare.

3. DESCRIBE LITERATURE
I am using the Amazon review data from SNAP. Previously
this data composed a portion of the data used by McAuley
and Leskovec [3] in order to find latent product and user
dimensions. While my assignment will try to predict a user’s
rating based on his review text, the aforementioned article
tries to predict a user’s rating of not yet purchased items.
Nonetheless, analysis of the review text is fundamental for
McAuley and Leskovec’s paper.

Using reviews for opinion mining is nothing new, however.
In 2002 Turney [4] used an unsupervised learning algorithm
to determine polarity. The main idea was to use adjectives
and verbs to estimate semantic orientation (the author offers
”romantic ambience”and ”horrific events”as examples). The
algorithm was run on 440 reviews from Epinion.

Pang [5] used movie reviews from IMDB to train supervised
machine learning algorithms in order to predict polarity.
They used 2053 reviews from 144 users and tested Naive
Bayes, Maximum Entropy classification and Support Vector
Machines. The techniques had similar results, but were all
better than random.

These early examples will serve as good comparison for the
model being implemented in this assignment, due to the sim-
ilarity of goals and use of relatively simpler models. More re-
cent attempts have more sophisticated goals and techniques.

Jurafsky [6] investigates how to extract the underlying emo-
tions and narratives from Yelp restaurant reviews. One
prominent tool was the use of specialized lexicons—domain
specific dictionaries that attribute values to common words.
They also used logistic regression and, on the statistics side
of things, the Monroe [Monroe 2008] method for accounting
for variance in words frequencies.

Jo and Oh [7] investigated ways to automatically find out
which aspects of an item were being evaluated (and how
each aspect was evaluated). Examples of aspects for a dig-
ital camera would be its photo quality, brightness of lens,
shutter speed and price. One technique used was a mod-
ified supervised latent Dirichlet allocation, a probabilistic
generative model, which take word positioning into account.

Sooner et al. [8] on the other hand, use a deep learning
method (semantic vector spaces), which resembles a tree
structure, to try to capture nuances in the phrases, by as-
signing a positive or negative status to each of the sentence

segments. A live demo can be found online at
http://nlp.stanford.edu/sentiment/.

As for the future, Multimodal Sentiment Analysis [9] might
be one hot area. It involves sentiment analysis aided not
only by text, but by audio and video footage of people as
well, for example, by analysing Youtube videos.

4. FEATURE SELECTION AND CLEANING
For this task we shall consider the review text to be the main
predictor. This is because we expect the user’s textual ex-
planation to justify his star-score. However, text itself is not
automatically understood by the computer as information,
and thus our predictive task has a high degree of natural
language processing (NLP).

The world of NLP is bigger than the word of sentiment anal-
ysis, and offers a variety of tools. For this assignment, how-
ever, I will stick the the more simpler ones, such as the
bag-of-words. this was accomplished by transforming each
review into a dictionary of word counts indexed by the word
itself.

However, for this step we must think of how to split sen-
tences into words. A good candidate is to split at spaces,
but sentence ending words are finished with a punctuation
sign. If we do not remove punctuations, we will get different
tokens that would otherwise mean the same in the bag-of-
words model, such as ”good”, ”good.” and ”good!”.

Therefore the first cleaning step was to transform all punc-
tuation (except for the apostrophe) into spaces. Secondly,
all words were put into lower case, to avoid duplicate tokens
when a token begins a sentence and is capitalized, such as
”Good” and ”good”.

Additionally, I have removed words that, although very com-
mon in English, do not add much information by them-
selves. Since the model I will use mostly ignore seman-
tic structure, removing these words should remove ”noise”
from the data, while making it smaller at the same time.
The list of stop words is in the appendix, and was found at
http://www.ranks.nl/stopwords.

Lastly, even though I will use a unigram model, negations
could be too important to just throw away. To capture the
negative of words, I replaced all instances of negation to-
kens such as ”not ”, ”isn’t ”, and ”doesn’t ”(notice the empty
space at the end) with ”not ”. This creates tokens such as
”not good”, which, if appear enough time, will have statisti-
cal significance in the model. The list of negations is in the
appendix.

Further data oddities will be explained in the model section
of this report. They weren’t removed, but they should not
affect the predictions too much.

When we looked at the score distribution over the product
category, we saw that, although generally the same, there
are certainly some differences. We also saw that top negative
and positive words seem to belong to a specific product type.
Given this, I will also test a version of the model where the
product category is taken into account.

5. MODEL
I will use the Naive Bayes Classifier for this predictive task.
This classifier is attractive for its simplicity and intuitive
appeal. Even so, it manages to do quite well on this sort of
task. Naive Bayes correctness for Turney [4] was on average
74%, vs 59% from guessing the majority class. For Socher
et. al [8], Naive Bayes managed 82.6% on the polarity test.

This model is called Naive Bayes because we are naive enough
to suppose that a certain word’s appearance does not depend
on any of the other words in the sentence. In this implemen-
tation of the model, each word in the training vocabulary is
a separate feature.

If we want to calculate P (Ck|~x), where C is the ”document”
with class k and

~x = [x1, x2, x3, · · · , xn]

is the vector of words that appear in C. then we can use
Bayes rule to find that it is equal to

P (Ck|~x)
P (Ck)P (~x|Ck)

P (~x)

. In particular, we can think of each star-score as being
a different class k ∈ {1, 2, 3, 4, 5}. For opinion mining, we
want to find which class k has the highest likelihood of being
true. In other words, we want to find

argmaxk[
P (Ck)P (~x|Ck)

P (~x)
]

. Under naive assumptions, we have conditional independen-
cies on the (xi, xj) pair for all i 6= j. Also, we can remove the
P (x) term in the denominator, for it is the same regardless
of k this leaves us with

argmaxk[P (Ck)

n∏
i=1

P (xi|Ck)]

Now, we can take the log of the expression to facilitate cal-
culation, without affecting the argmaxk operation. This
becomes

argmaxk[log(P (Ck)) +

n∑
i=1

log(P (xi|Ck))]

P (Ck) is the prior probability of a review having star-score=
k. We only need to count the number of reviews of each score
and divide for the total number of reviews.

P (Ck) =
of reviews with score k

total # of reviews in corpus

However, for calculating P (xi|Ck) we have a few options.
We could count how frequently a word appears in reviews
with score k by counting the number of times a given word
shows up and divide it by the total count of words in that
star-score. However we can also assume that, for a given
review, the repetition of words can safely be ignored, and
we deal instead with the presence of words. This transforms
our model into a Bernoulli Naive Bayes.

P (xi|Ck) =
of reviews with score k that contain word i

of reviews with score k

When these probabilities are calculated, we can begin classi-
fying reviews based on their text. When it came to consider
the category into account, the proccess was similar, except
that now our number of classes increases to account for all
scorecategory combination.

The major advantages of this method is its simplicity and
relatively fast execution. Additionally, the training only con-
sists of calculating prior and posterior probabilities. Lastly,
rare tokens (such as misspelled words, proper nouns and sim-
ilar oddities) receive a small weight in classification. There
is also no need for a domain-specific lexicon.

The major disadvantages are the lack of any consideration
regarding sentence structure and word positioning.

An alternative to my ”unigram” approach would be to use
”bigrams” or even ”n-grams”. However, as seen on Pang
[Pang 2002], the differences usually are not big.

6. RESULTS
The classifier was trained with random 2/3 of the data cor-
pus. The test data was set to be the remaining 1/3. When-
ever a classification was made, it was compared against the
actual score. In this assignment, I am trying to predict po-
larity. Thus, ”hits” and ”misses” were assigned according to
the following table:

Thus the following results have a small bias towards making
errors, since the ”neutral” class was defined as being exclu-
sively with score 3.

For comparison, the classifier was run both in-sample (on the
training data) and out-of-sample. As expected, in-sample
predictions were very accurate, with the category-aware clas-
sifier doing almost 7% better than the score-only aware clas-
sifier. In the actual testing data, the classifier had an accu-
racy close to 75%. Using the product category increased
performance by about 4%. These results are rather better
than pure random guesses, and better than naive classifier,
which would predicted all scores to be 5, and would yield a
59% of correctness (it would get reviews with score 4 and 5
correctly). This is in line with the aforementioned Turney’s
[4], but falls short of Socher et. al [8].

Following is the confusion matrix for both classifiers, first
score-only, the second is the category-aware matrix.

Overall the performance was as expected. The boost in per-
formance by using the category information was welcome,
but unfortunately rather small. There might have been a
gain in performance if bi-grams were used, or if more so-
phisticated cleaning mechanisms were used.

Finally, the Naive Bayes classifier is a simple, yet effective
tool. It’s easy to implement, as well as its availability in
several programming packages contribute for having this
method as a baseline for more complex ones.

APPENDIX

A. REFERENCES
[1] Christopher Potts. On the negativity of negation. In

Nan Li and David Lutz, editors, Proceedings of
Semantics and Linguistic Theory 20, pages 636–659.
CLC Publications, Ithaca, NY, 2011.

[2] E. Cambria, B. Schuller, Yunqing Xia, and C. Havasi.
New avenues in opinion mining and sentiment analysis.
Intelligent Systems, IEEE, 28(2):15–21, March 2013.

[3] J. J. McAuley and J. Leskovec. Hidden factors and
hidden topics: understanding rating dimensions with
review text. In Recommender Systems, 2013.

[4] Peter D. Turney. Thumbs up or thumbs down?:
Semantic orientation applied to unsupervised
classification of reviews. In Proceedings of the 40th
Annual Meeting on Association for Computational
Linguistics, ACL ’02, pages 417–424, Stroudsburg, PA,
USA, 2002. Association for Computational Linguistics.

[5] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
Thumbs up?: Sentiment classification using machine
learning techniques. In Proceedings of the ACL-02
Conference on Empirical Methods in Natural Language

Processing - Volume 10, EMNLP ’02, pages 79–86,
Stroudsburg, PA, USA, 2002. Association for
Computational Linguistics.

[6]

[7] Yohan Jo and Alice H. Oh. Aspect and sentiment
unification model for online review analysis. In Irwin
King, Wolfgang Nejdl, and Hang Li, editors, WSDM,
pages 815–824. ACM, 2011.

[8] Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng, and
Christopher Potts. Recursive deep models for semantic
compositionality over a sentiment treebank. In
Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages
1631–1642, Stroudsburg, PA, October 2013. Association
for Computational Linguistics.

[9] Louis-Philippe Morency, Rada Mihalcea, and Payal
Doshi. Towards Multimodal Sentiment Analysis:
Harvesting Opinions from The Web. In International
Conference on Multimodal Interfaces (ICMI 2011),
Alicante, Spain, November 2011.

B. LIST OF STOP WORDS

