
CSE 255 - Project 1
User Score for Restaurants Recommendation System

using Google Dataset

Diego Cedillo
————

A53054538
dcedillo@eng.ucsd.edu

Idan Izhaki
———–

A53044317
iizhaki@eng.ucsd.edu

ABSTRACT
This project report presents a suggestion of a rating pre-
dictor a user will give to a given restaurant considering the
previews reviews made by the user, the type of food of the
restaurant sells, the location of the restaurant, and reviews
given by other people to the restaurant. For this purpose we
used a Google dataset containing information about users,
locations and reviews. We pre-processed this dataset to filter
only the restaurants located in the US area, we clustered the
restaurant locations into a smaller subset using k-means and
we tuned the categories names to fit better our purpose. Fi-
nally, we used linear regression least-squares, stochastic gra-
dient descent and l-bfgs algorithms to train over the training
data, and predict the testing data. We eventually obtained
a mean square error of 0.61 for lbfgs and 0.591 for SGD.

Keywords
l-bfgs, rating prediction, reviews, stochastic gradient, linear
regreation, k-means

1. INTRODUCTION
Nowadays, in the Big Data era, people are connected to

the world through the Internet all the time. People post pic-
tures on the social networks every second, share the place
they are visiting, the food they are eating; but more im-
portantly, people are also giving feedback to the places they
visit. Facebook, Google Maps (Figure 1), Yelp, foursquare

and any other service that provides information about places
on the globe has a rating scale to indicate if a place is worth
visiting or not.

People are rating restaurants, bars, movie theaters, etc. in
an increasing rate. People like to emphasize and share how
much they enjoyed a place and, with enough motivation, to
spread the word when they end up in a place they hated.
These feedbacks can be expressed as comments or reviews,
together with a rating of the places - usually represented on
a star scale from 1 to 5.

For this project, we have decided to use the massive dataset
from Google that contains information about places around
the world, users with accounts in Google services and re-
views that users have given to these places. Considering
that the ratings of a place greatly depends on the category
of the place (i. e. “Turistic”, “Restaurant”, etc), we decided
to focus only on ”Restaurant” categories. Moreover, consid-
ering the amount of data presented, we take as an example
for our prediction only the data that corresponds to places
with GPS coordinates in the United States.

Considering the reviews given to restaurants in the US, we
create a feature matrix that will help us to predict the rating
that a user will give to a restaurant, considering the previous
reviews that he gave to other restaurants, the categories that
the restaurant defines (as type of food and ethnicity), the
location of the restaurant, and the average rating given by
other users. Once we collect the feature vectors and we train
the data, we try our predictions on a subset of the data -
known as a ”testing set”. For this data, we found a Mean
Square Error (MSE) of 0.827 when using l-bfgs, sgd and
linear regression as the learning algorithms.

We present statistics about the data and how we filter the
data in section 2. We describe the feature matrix that we use
on section 3. The methods used for learning are described
on section 4. Section 5 provides the results of our prediction
using different algorithms and feature matrices. Finally, we
conclude our findings on section 6.

2. THE DATASET
The dataset used for this project is Google Location & Re-

views information. This dataset contains information about
3.7 million users, 3 million places and 11 million reviews that
users gave to those locations. Each user’s information entry
is composed of a name, current place (city and GPS coor-
dinates), level of education, jobs held, and previous places
visited. Similarly, each place entry is composed of the name
of the place, hours they open, phone number, address, and

1



Figure 1: Places on the Google dataset Heat Map

GPS coordinates that determine where the restaurant is lo-
cated. Finally, the reviews entry is composed of the user
that gave the review, the place reviewed, a rating for the
place between 1000 and 5000 (we normalize it to the range
of 1 to 5), a text review of the place, a list of categories
that the reviewer gave to the place (Sushi Restaurant, Cof-
fee Bar, Church, Movie theater, etc), and the time that the
review was created.

For the purpose of our project, we filtered and processed
the dataset as follows:

First, we took all the reviews from each restaurant and
we collected all the categories reviewers defined to each lo-
cation, so we can map any place to its categories. Second,
we took the average of all reviews per place to compute
the average rating for the place, and we stored these cate-
gories and average rating as a characteristic of the places.
Then, we filtered only places that are in the US using the
latitude and longitude coordinates. Since we are only inter-
ested in predicting the rating a user would give to a specific
restaurant, we filtered places whose categories correspond to
restaurants (“Italian restaurant”, “Asian Restaurant”, “Fast
Food restaurant”, etc) . This left us with 357,191 restau-
rants in the US. Figure 2 shows a heat map of the locations
of restaurants in the US by GPS coordinates.

For the reviews, we filtered out restaurants that are out-
side of the US, using our previously filtered dataset. Like-
wise, we took out all reviews whose user is not in out data
set (caused by corrupt or missing data). This left us with
1.6 million reviews of restaurants in the US. Finally, we se-
lected only the users that appear on these reviews (692,157
users in total). Figure 3 shows a heat map of rating of each
restaurant correspondingly to its location.

Since the size of the feature matrix we selected depends on

Figure 2: Restaurant Locations Heat Map

Figure 3: Restaurant Ratings

2



the number of categories of the restaurants, and this signifi-
cantly increases the time to train the data, we decided to re-
duce the amount of categories of restaurants from 363 to 200
in total. First, we merged categories that described the same
type of food but had alternative names, such as“Restaurants
- Seafood” and ”Seafood Restaurant”, then we also merge
categories with misspelling errors. Finally, we checked the
categories that were used less than 5 times on restaurants
and we replaced them with some other categories. Usually,
these categories were either spelling mistakes or too specific
for training purposes. During this process we were cautious
not to merge restaurant categories that would change their
context or specificity, unless it was extremely necessary (i. e.
“Restaurants - Uruguayan” with “Restaurants - Latin Amer-
ican”).

2.1 Dataset Statistics
From this filtered data we can highlight the following

statistics:

Table 1 shows general statistics about the data. Table 2
shows 10 restaurant categories with most number of reviews.
Figure 5 shows the average rating for the 20 restaurant cat-
egories with the highest rating. From this graph, we can
see that restaurant on the east coast have a higher average
rating than the ones on the west coast.

Figure 6 shows the average rating per location on a heat
map. This figure does not provide a perfect shape of the US
as Figure 3 does, but considering the shape of the later, we
can still see that the rating on the west and east coasts are
higher than the ones in central USA.

Table 1: General Statistics

Number of distinct restaurant categories 200
Average review rating for places 3.994
Average review rating for places in the US 3.978
Average review rating for restaurants in the US 3.86
Average number of reviews per restaurant 4.5
Minimum average rating of a restaurant in the US 1.0

Table 2: Top 10 restaurant categories with most number of
reviews

Restaurant category # of reviews
Restaurant (Generic) 95225
Restaurants - Fast food 62372
Restaurants - American 51259
Restaurants - European 50239
Restaurants - Asian 43532
Restaurants - Pizza 41081
Restaurants - Italian 39191
Restaurants - Mexican 32950
Restaurants - Burgers 29797
Restaurants - Latin American 27985

2.2 Clustering locations
The Google dataset contains places of interest (e.g., restau-

rants, shops, etc.), their addresses and their GPS coordi-

Figure 4: Top 10 locations with the highest rating

Figure 5: Top 20 Restaurant Categories

Figure 6: Average rating per location

3



Figure 7: 100 centroids of labeled locations

nates as decimal degrees with negative numbers of south
and west. Some of the users on Google’s data set have GPS
coordinates as well, and we filtered out those who do not
have it. We believe that different restaurants in the US will
get different scores for the exact same restaurant in a dif-
ferent location. Asian food will probably get a higher score
in California than in Texas, American food will probably
get higher score in South Carolina than in Oregon, and so
on. One way to approach it is by using zip-codes, but that
is an information we did not have. To imitate zip-codes
we needed to map 2-dimensional space into a natural single
range. This is done using K-Means algorithm. We took all
GPS coordinates of restaurant and grouped them together
into a matrix, each group got its own label. Intuitively, re-
gions (labels) with more restaurants will have more samples
as part of it, and places that are more isolated will have
one big region. After investigating the amount of labels, we
decided to use K = 300 over all of the US as a starting
point. Later on, we saw that K = 300 makes some of the
algorithm run for too long, and we believed the accuracy
from such granularity is not worth it, so we reduced it to
K = 100 labeled regions. The result mapping is as follows,
where each red dot is a labeled region:

K-Means clustering algorithm uses as an input a features
matrix. In our case, each column is the ”south” and ”west”
real value coordinates, and each row is a restaurant sample.
The training result is called a vector of centroids. A centroid
is defined as the center of gravity of each group of samples
assigned to a label. Given a new sample, in order to predict
its label, we simply need to find the centroid that is closest
in Euclidean distance to that sample. The minimal distance
is defined as

argmink

∥∥∥X − Ck

∥∥∥2
2

. This can be computed in O(K · n). The greedy algorithm
for K-Means is relatively simple. We pick K random (or
more sophisticatedly computed) centroids and, apply the fol-
lowing formula on all Ck-s until no more changes are made:

Ck =

∑
i δ(yi = k) ·Xi∑

i δ(yi = k)

and

δ(true) = ~1, δ(false) = ~0

2.3 Relevant words on reviews

As part of our efforts to improve the coefficient of determi-
nation, we tried to reinforce the scores per review by using
positive and negative common words in reviews. We defined
Positive (P) reviews as

P = {ω|r ∈ Reviews, ω ∈ r, Score(r) ≥ 4, 000}

and

N = {ω|r ∈ Reviews, ω ∈ r, Score(r) ≤ 2, 000}

. Of course, we wanted to avoid words that are potentially
neutral, and that can be done by computing P = P \ (P ∩
N) and N = N \ (N ∩ P ). Finally, we sorted each set by
the number of occurrences (high to low). By taking top
50 positive reviews and top 50 negative reviews, we could
accumulate for each restaurant the amount of times it used
each positive and negative words as a vector of size 100. The
result we got for the positive and negative vectors (sorted)
were:

Table 3: Top 50 positive and negative words in reviews

Positive ’wonderful’, ’fantastic’, ’loved’, ’perfect’,
’reasonable’, ’attentive’, ’outstanding’,
’variety’, ’pricey’, ’specials’, ’yummy’,
’brunch’, ’helpful’, ’unique’, ’die’, ’beau-
tiful’, ’ambiance’, ’incredible’, ’perfectly’,
’beers’, ’vegetarian’, ’neighborhood’,
’homemade’, ’patio’, ’flavors’, ’cuisine’,
’miss’, ’yum’, ’chicago’, ’glad’, ’beat’,
’packed’, ’chocolate’, ’affordable’, ’flavor-
ful’, ’reasonably’, ’pho’, ’environment’,
’easy’, ’healthy’, ’gem’, ’downtown’,
’comfortable’, ’crispy’, ’cozy’, ’interest-
ing’, ’favorites’, ’consistently’, ’generous’,
’tender’

Negative ’awful’, ’disgusting’, ’nasty’, ’waste’,
’worse’, ’charged’, ’sucks’, ’sick’, ’gross’,
’hair’, ’burnt’, ’soggy’, ’barely’, ’em-
ployee’, ’tasteless’, ’refused’, ’overcooked’,
’sent’, ’refund’, ’supposed’, ’crap’,
’cashier’, ’mess’, ’driver’, ’stale’, ’ap-
parently’, ’bother’, ’ridiculous’, ’health’,
’poisoning’, ’unprofessional’, ’returned’,
’ignored’, ’joke’, ’spoke’, ’receipt’, ’nor’,
’threw’, ’hung’, ’messed’, ’answer’,
’telling’, ’complained’, ’shame’, ’needless’,
’calling’, ’standing’, ’upset’, ’disappoint-
ment’, ’poorly’

We assumed at that point that using keywords will not
improve accuracy by much, as the scoring information per
review is more comprehensive and accurate than a combina-
tion of common positive and negative words. Nevertheless,
we hoped that using it will improve regions separation, and
users’ unique taste. A user that mentioned positively the
waitresses beforehand, will probably mention the service af-
terwards again, and a restaurant with an exceptionally good
service will probably get a higher score from that user.

3. FEATURE MATRIX
In order to apply a learning algorithm on the data, we

needed to choose the features that will be useful for the pre-

4



diction task. On this stage of the project, we tried different
combinations of feature vectors to improve our prediction.

First, we created a feature matrix with a column of 1s
to represent the constant offset. We added 300 columns to
represent the location of each restaurant, computed using
K-means algorithm. Column K could be ”1” iff the GPS
location was labeled as value K (and ”0” otherwise). If the
restaurant is in cluster labeled 5, all columns are 0 expect
column 5 that has a value of one. Additionally, we included
363 columns (decreased later on) that represented the ini-
tial categories. For each restaurant, value one on a column C
represented that the restaurant had at least category labeled
C. With this feature matrix we tried to predict the rating
of a restaurant considering its location and the type of food
it sells (given by the categories). From that, we discovered
that the location of the restaurant does not significantly af-
fect the final rating of the restaurant. The weights of this
training were mainly significant on the offset and the restau-
rant categories. The final results were not as impressive as
we expected them to be, and that is the reason we created
a new feature matrix.

As a second feature matrix, we decided to predict the
rating given to a restaurant by an user. This prediction is
useful for recommending restaurants to users and giving an
approximate rating to the recommended restaurants accord-
ing to the user’s past reviews. In this new feature matrix
we had a row for each restaurant review (1.6 million) rather
than restaurant sample, each feature vector had, as before,
one that represented the offset, 300 columns for represent-
ing the cluster of the restaurant as described previously, 363
columns to represent the categories given to the restaurant
(type of food they have). Additionally, we added the av-
erage rating given to the restaurant, and 363 columns that
represent the unique features about the user. Each column
represented a restaurant category and the number included
in the feature vector was the average rating given by the
user, who created the review, to that specific category. In
other words, each category go the average rating users gave
to that restaurant, and defined it with that category. With
this feature matrix, we could only train it with the method
of least-squares and stochastic gradient descent efficiently,
since the amount of data was too big to handle with l-bfgs,
and did not present convergence even after 40 hours.

We also tried a slight change to the second feature matrix,
adding 100 columns to represent how many times we found
on the review the most common 50 negative and 50 positive
words (as described on 2.3). It is worth to notice that this
would not be useful if we want to predict the rating that
a user might give to a restaurant that he has not been re-
viewed. As expected, after training the data, we proved that
the addition of words found on the reviews of that specific
restaurant, did not provide more information than the one
the scores alone gave. This is because in case a restaurant
had a high average rating, we were to find more positive
words counts, and conversely in a low rated restaurant.

The fact that training the feature matrix took more time
than expected, we decided to compress the feature vectors.
First, we started by reducing the 300 locations clusters into
100. Then, we decided to review the restaurant categories
and we decreased them from 363 to 200 by merging cate-
gories with different names and misspellings, as described
on the first part of section 2. Considering this change, we
also decreased the number of columns assigned to the users

average rating per category. This changes helped to reduce
the number of features for each review from 1028 to 502 in
total. This is the feature matrix we ended up using to train
and test the data on stochastic gradient descent, linear re-
gression least-squares and l-bfgs.

Table 4 summarizes the feature vector structure for each
of the 1.6 million reviews. It shows the number of bits used
to represent each feature, as a combination of data from the
restaurant and the reviewer.

Table 4: Feature Vector Summary

1 100 200 1 200
offset location categories average

rating
average
rating given
by users
for each
category

On all mentioned experiments, we randomized the posi-
tion of the reviews and we took 70% of the data as a training
set and 30% as a test set.

4. THE PREDICTION

4.1 Method Used
In order the train the feature vectors over labels, we used

linear regression. By defining the feature vectors as a matrix
X ∈ RS×F and labels as y ∈ RS , where S is the amount of
samples and F is the amount of feature values on each vector,
we would like to compute θ such as

X · θ = y + ε

s.t. epsilon (error value from from perfect prediction) is
minimal.

There are many approaches to solve the linear regres-
sion problem, but in order to explain them we defined three
terms:

• MSE(ŷ, y; θ) - the mean square error between the pre-
dicted labels and the real labels, and defined as the
squared Euclidean distance of prediction from real val-
ues.

MSE =
∥∥∥ŷ − y∥∥∥2

2

• FV U(ŷ, y; θ) - the coefficient of determination, where
FV U = 1 means a trivial predictor (always take the
average) and FV U = 0 means a perfect predictor. It
can help us to understand how accurate is our predic-
tor.

FV U =
MSE(ŷ, y; θ)

V ar(y; θ)

and since the variance is defined as

V ar(y) = MSE(avg(y), y; θ)

FV U =
MSE(ŷ, y; θ)

MSE(avg(y), y; θ)
.

5



• ŷ = Predictor(X; θ) - is the prediction of labels, given
features matrix of samples, and the training model
θ. Since our feature vectors are simply real numbers,
defining θ as a vector of real values (weights) is suffi-
cient. From now on, Predictor(X; θ) is simply defined
as ∑

i

Xi × θTi

• L1 and L2 regularization - in order to give good results
in the general case, and not overfit to a specific in-
put, regularization is required. Regularization means
bounding the values of weights; they cannot be too
higher or too small, thus cannot overfit a very specific
case and will perform better in the general case.

L1 =
∥∥∥θ∥∥∥

2
=

√∑
i

θ2i

The ”Tikhonov regularization”, expects minimal error
in overall, and does not necessarily tries to minimize
big difference more than small ones (good in case we
do want to allow more flexibility in variation). Now
consider L2

L2 =
∥∥∥θ∥∥∥2

2
=
∑
i

θ2i

L2 puts more emphasize on this overfitting cases. Since
we do want to allow flexibility but avoid overfitting, to
get best results we used elasticnet regularization which
is a balance between the two:

α · L1 + (1− α) · L2

.

4.2 Linear regression least-squares
This approach uses arithmetic to compute θ. Since that

X · θ = y in the ideal case,

θ = (XT ·X)−1 ·XT · y

. By definition, such an approach overfits the given samples,
and if X is square and of full rank, the θ is the ”exact” so-
lution of the equation (perfect prediction to train samples),
therefore it is good as a comparison tool, but not as a general
input predictor.

4.3 L-BFGS
L-BFGS algorithm is a limited-memory version of BFGS,

builds and refines quadratic model of a function being op-
timized. Algorithm stores last M value or gradient pairs,
and uses them to build positive definite Hessian approxi-
mation. This approximate Hessian matrix is used to make
quasi-Newton step. If quasi-Newton step does not lead to
sufficient decrease of the value or gradient, we make line
search along direction of this step.

The quasi-Newton step is the change in weights given this
formula:(
I − yk ·∆XT

k

yTk ·∆Xk

)T

·Hk ·
(
I − yk ·∆XT

k

yTk ·∆Xk

)
+

∆Xk ·∆XT
k

yTk ·∆Xk

.

Essential feature of the algorithm is positive definiteness
of the approximate Hessian. Independently of function cur-
vature (positive or negative) we will always get ”symmetric
positive definite matrix”, and quasi-Newton direction will al-
ways be descent direction, meaning, after enough iterations
we will converge to an optimal result.

Another essential property is that only last M function or
gradient pairs are used, where M is moderate number smaller
than problem size S, often as small as 3-10. It gives us very
cheap iterations, which cost just O(F ·M) operations.

As mentioned before, the hessian matrix (second deriva-
tive) is an estimation, but the goal function to minimize (and
usually its derivative for performance and accuracy boost)
are accurate. The function we are minimizing over θ is

f(θ) =
1

N
·
∥∥∥y −X · θ∥∥∥2

2
+ λ ·

∥∥∥θ∥∥∥2
2

where the second term is L2 regularization factor. It is
clear that f(θ) returns a single real number, and forces reg-
ularization on MSE. By simply computing the gradient of
f , we get:

f ′(θ) =
∂f(θ)

∂θ
=

2

N
·XT · (X · θ − y) + 2 · λ · θ

Notice that L1regularization would have been canceled
out on the derivative.

The biggest problem with L-BFGS is its performance. In-
creasing the amount of features reduces performance expo-
nentially since more iterations are required and the hessian
matrix becomes more complicated to estimate. We needed
some other strategy that does not compute the whole matrix
at a time, but improves it iteratively per sample. For that
we used stochastic gradient descent.

4.4 Stochastic gradient descent
The biggest difference between BFGS and SGD is that

BFGS estimates the hessian (2-dimensional) over all given
samples, whereas SGD computes the gradient for each sam-
ple locally. That means the computation and memory com-
plexity required for each epoch is smaller, and the amount of
epochs (full stack of samples iteration) required is smaller,
and usually converges pretty well after 5-15 epochs.

Given a function f(~θ) Gradient Descent finds a stationary
point of that function, where the gradient is 0. Meaning,

that the weight vector ~θ has an optimal value. Gradient
descent does that by iteratively updating the parameters
with the current derivative and hyperparameter λ.

~θ := ~θ ± µ∂f(~θ)

∂~θ

Explanation of its correctness can be found in relevant
papers. The (+) sign is used for gradient ascent (finding the
maximum) and (−) sign for gradient descent (finding the
minimum). SGD algorithm uses the same technique, only
that randomizes the input dataset order, and use f(θ) =
MSE(; θ) + λ · L2 as the function to minimize. Since f

provides a numerical value for the correspondence of ~θ to the
training set, maximizing this values results in a maximum
correspondence.

Since we defined

f(θ) =
1

N
·
∥∥∥y −X · θ∥∥∥2

2
+ λ ·

∥∥∥θ∥∥∥2
2

6



and

f ′(θ) =
∂f(θ)

∂θ
=

2

N
·XT · (X · θ − y) + 2 · λ · θ

it is obvious that there is at least one global minimum, and
probably many local minimums, but we do not want to over-
shoot it and stop on a local minimum. Because of that we
used an adaptive step size technique, or ”Grid Search”.

Grid Search is a technique where we run the experiment
on different values of θ and µ and find the optimal result.
That way, we avoid getting stuck in a local minimum and
even improve overall performance for future queries. No-
tice that the step size µ hyperparameter is also not a fixed
one. We decrease its value on each epoch. By doing that,
the algorithm achieves a region of optimum faster, yet more
accurate and closer to the ideal optimum.

Convergence is achieved either after a fixed amount of
iterations, or when the total change in gradient is smaller
than than µ value.

5. RESULTS

5.1 Least-squares
As described earlier this method doesn’t take into account

regularization and it is one of the simplest methods to train
our data with. Table 5 shows the MSE, Variance and FVU
of when we train our initial feature matrix. As expected,
when we calculate the MSE over the test data we can see
that the error is unacceptable. The reason for this error is
that the weights learned by this predictor are over fitted with
the training data. This causes some weights to be extremely
positive or negative, predicting ratings a lot greater than 5
and lower than 1.

Table 5: Prediction error training with linear regression
least-squares and the 1028 features dataset

Training set Test set
MSE 0.831968 2.412797e+19
Variance 1.39926 1.40084
FVU 0.594579 1.72561e+19

When we apply the same method with the reduced feature
matrix (502 features), we don’t get the same problem of
overfitting for two reasons: First, the training and test sets
for the two feature matrices are different and, second, the
fact that some of the features are collapsed results in less
room for overfitting an specific weight with a sample that is
not common. Table 6 summarizes the results for this method
when applied the feature matrix of 502 features.

Table 6: Prediction error training with linear regression
least-squares and the 502 features matrix

Training set Test set
MSE 0.832650 0.834614
Variance 1.39814 1.40084
FVU 0.595541 0.595797

5.2 Stochastic Gradient Descent
For the Stochastic Gradient descent method, we first pro-

vide the MSE and FVU when we use the 1028 features ma-
trix on Table 7. As expected, the introduction of a method
that handles regularization solves the problem of overfitting.
Moreover, the nature of SGD prevent the prediction to be-
come extremely off compared with the real values.

Table 7: Prediction error training with Stochastic Gradient
Descent and the 1028 features matrix

Training set Test set
MSE 0.825505 0.825708
Variance 1.39926 1.39823
FVU 0.589959 0.590537

Table ?? summarizes the results obtained when training
the 502 features matrix. The fact that the MSE and FVU
of Tables 7 and ?? are similar indicates that the merge
of categories of restaurants was done in such a way that
we didn’t lose important information about the restaurants.
Also, it indicates that the use of less locations (100 instead
of 300) doesn’t compromise the result. This was anticipated
considering that, as we mention earlier, the weights for each
one of the location doesn’t have a strong significance on the
result.

Table 8: Prediction error training with Stochastic Gradient
Descent and the 502 features matrix

Training set Test set
MSE 0.825508 0.826955
Variance 1.39814 1.40084
FVU 0.590433 0.590329

In Figure 8 we can see how training with different µ values
changed the accuracy of our predictor (FLV value). In order
to avoid overfitting the table shows the FVU on the training
data rather than the testing data.

Figure 8: FVU for different regularization factors

7



Figure 9: Average Error per location cluster

5.3 l-bfgs
When we train our first feature matrix for predicting the

reviews of the restaurants by a user, we first improve the per-
formance of the minimizing function and the computation of
the derivative, but even with this changes the 1028 features
for each of the 1.6 million reviews made the algorithm run
for more than 20 hours without reaching conversion. Once
we create the new feature matrix with less location clusters
and less categories, we were able to converge in 6 minutes.
We expected this behavior since we realize that the time
that the algorithm takes to converge grows linearly with the
number of samples but exponentially with the number of
features.

Table 9: Prediction error training with l-bfgs and the 502
features matrix

Training set Test set
MSE 0.856863 0.857289
Variance 1.398141 1.400836
FVU 0.612859 0.611984

Another important result is the Mean Square Error (MSE)
for each of the location clusters that is presented in Figure 9.
From this figure we can appreciate that the highest errors
are mainly on the center of the US. The reason for these
becomes apparent if we compared it with Figure 2. From
there we can see that the places with less number of ratings
have lower accuracy and therefore higher mean square error.

5.4 Comparison between methods
Table 10 summarizes the results of the three methods

used with the 502 features matrix. This table also shows
a comparison of the performance of each one of the methods
used. Least squares shouldnâĂŹt be used since it doesnâĂŹt
take into account regularization and will produce overfitting
as shown in Table 5. SGD is useful since it can converge
quicker than other methods with comparable levels of accu-
racy. This method is specially useful with big feature matri-
ces since instead of calculating the derivative of the minimize
formula, it estimates it. L-BFGS represents a good method
for learning the weights but for our case it was exponential

on the number of features given.

Table 10: Comparison of the methods used using the 502
features matrix

l-bfgs Stochastic
Gradient

Stochastic
Gradient

Least
squares

Max # of
iterations

15000 500 5 n/a

MSE 0.857289 0.826955 0.829287 0.834614
Variance 1.40084 1.40084 1.40084 1.40084
FVU 0.611984 0.590329 0.591994 0.595797
Convergence
Time (s)

324 982 11 445

6. CONCLUSIONS
After pre-processing the Google locations data and select-

ing the features that we considered as helpful for predicting
the users rating for a restaurant, we provided three ways to
train the weight vector needed for the prediction. From the
results presented we conclude that the least squares method
should not be used since it overfits the data. SGD and l-
bfgs are good candidates as learning algorithms, as long as
regularization is used. The use of the locations of a restau-
rant does not affect the final rating in the same proportion
as the categories of the restaurant do. For future improve-
ments of our prediction task we could consider the time at
which the review was created, as well as using a predictor for
any possible location around the globe, in case we consider
the entire world data set.

7. REFERENCES
[1] C. M. Bishop. Pattern Recognition and Machine

Learning (Information Science and Statistics).
Springer, 2007.

[2] C. Elkan. Maximum likelihood, logistic regression, and
stochastic gradient training.

[3] P. Flach. Machine Learning: The Art and Science of
Algorithms that Make Sense of Data. Cambridge
University Press, 2012.

[4] K. P. Murphy. Machine Learning: A Probabilistic
Perspective (Adaptive Computation and Machine
Learning series). The MIT Press; 1 edition, 2012.

[5] Wikipedia. Broyden-fletcher-goldfarb-shanno algorithm
— wikipedia, the free encyclopedia, 2015. [Online;
accessed February-2015].

[6] Wikipedia. Stochastic gradient descent — wikipedia,
the free encyclopedia, 2015. [Online; accessed
February-2015].

8


