
CSE 255 Assignment 1: Helpfulness in Amazon Reviews

Kristján Jónsson
University of California, San Diego

9500 Gilman Dr
La Jolla, CA 92093 USA
kjonsson@eng.ucsd.edu

Devin Platt
University of California, San Diego

9500 Gilman Dr
La Jolla, CA 92093 USA
dwplatt@eng.ucsd.edu

ABSTRACT
In this paper we consider models for predicting the help-
fulness rating of Amazon book reviews. We examine
features such as the review’s star rating, the length of
the review text, the readability of the review text, and
the amount of comparisons made in the review. We
compare Support Vector Machine and Random Forests
models both for regression and classification.

Keywords: Amazon, reviews, helpfulness.

INTRODUCTION
Multiple websites such as Amazon and eBay rely on user
reviews to provide the consumer with an objective re-
view of a product. Amazon allows its users to vote on
the helpfulness of a review. The ratio of positive votes
reflects the review quality. Unfortunately, new products
and low traffic products don’t have enough helpfulness
votes to accurately assess the review quality. For these
scenarios its important for these sites to be able to au-
tomatically assess the review quality in order to display
useful reviews to its customers and thus improve user
experience.

EXPLORATORY ANALYSIS
We chose to explore the Amazon reviews data set1. The
reviews range in date from June 1995 to March 2013.
The format of the data is

• product/productId
• product/title
• product/price
• review/userId
• review/profileName
• review/helpfulness
• review/score
• review/time
• review/summary
• review/text

1http://snap.stanford.edu/data/web-Amazon.html. See [3].

We focused our work specifically on Amazon book re-
views, which totaled in 12,886,488 reviews.

We started by limiting our data set to reviews with at
least 5 helpfulness ratings. Reviews with few ratings
don’t have enough granularity to reflect the true help-
fulness of the review. On the other hand we don’t want
to lose too much data. We found 5 to be a reasonable
cutoff. After filtering we were left with about 4.2 million
reviews.

In similar fashion to [1], we define our estimate of review
helpfulness as the helpfulness ratio:

HR = number of positive helpfulness ratings
number of helpfulness ratings

Out of our filtered set of reviews the average helpful-
ness ratio was 70% with a median of 80%. Most rat-
ings seemed to be positive which suggest that people
are more likely to rate if they found a review helpful.
This could also be the result of a positive feedback loop
since Amazon is more likely to present the most helpful
reviews to its users.

User Helpfulness Over Time
We were curious to see how review helpfulness of indi-
vidual users changed over time. Do users become more
adept at writing helpful reviews? In order answer this
we tried looking at users who had written at least 10
book reviews. Unfortunately many of the reviews were
duplicates so we had a hard time of finding a pool of
users who actually had written more than 10 reviews.
We tried removing duplicates based timestamp, userId
and productId but only to realize that most duplicates
had differing productIds. Removal would have required
matching of review text were and since the filesize was
large and reviews sorted by productId we abandoned
this quest.

The search for features
We started by looking for correlations between various
features of the reviews and helpfulness. For a review
to contain useful information it would likely need to be
longer than some threshold. We searched for a lower
threshold under which reviews were unlikely to be help-
ful. From figure 2 it seemed such a threshold existed
around 100 characters. Likewise we looked at very long
reviews and saw that reviews of length greater than 1000

seemed more likely to be helpful (Figure 3). At any rate
review length seemed like a promising feature to include.

We hypothesized that reviews with extreme ratings, like
1 star or 5 star, would be less helpful than more bal-
anced and objective reviews. Looking at figure 1 how-
ever we found similar helpfulness distribution among all
5 different star ratings suggesting there was little di-
rect correlation between. However, Korfiatis et al.[2]
hypothesize that star rating becomes meaningful in con-
junction with review length and that long reviews with
extreme ratings are qualitatively different than short re-
views with extreme ratings. A review with both extreme
rating and a long text could suggest an explanation of a
good/bad experience while a short review with extreme
rating could indicate emotional rambling.

A helpful review must provide information to the users
and so we expect that a review needs to be accessible
to be helpful. We looked for features that measure the
readability of text and found numerous measures in the
literature. Korfiatis et al.[2] looked at four different
readability scores in the context of predicting review
helpfulness. We tried using the Gunning-Fog Index,
the Smog index and the Automated Readability Index
(ARI). They were all highly correlated so we chose ARI
because it was the most computationally efficient one.
The Automated Readability Index indicates the educa-
tional grade level required for understanding text. It
ranges from 1 - 12 where grade 1 is the most readable
and grade 12 the least. It is defined by [2]

ARI = 4.71
(
characters

words

)
+ 0.5

(
words

sentences

)
− 21.43.

Figure 4 shows a plot of helpfulness against readability.
We can see that there is some correlation between the
variables.

Another feature that we explored was how comparative
a review is. A review that makes comparisons could
indicate an objective comparison that provides useful
information to the reader. This feature was suggested
in the future work of [1] and as far as we know has not
been tried before. Ideally such a feature should count
the number of comparisons, but also normalize by text
length in order to minimize correlation with length. We
define the Comparative Index (CI) as

CI = comparative words
words .

To discern whether a word was comparative we used a
part of speech (POS) tagger. We counted words tagged
as comparative adjectives (JJR) or comparative adverbs
(RBR) such as “bigger” or “better” respectively. Fig-
ure 5 shows CI against HR. Although unclear there ap-
pears to be a potential relationship between the vari-
ables.

Observations of Specific Samples
We might expect that reviews with lot’s of comparisons
are more helpful. Some of the randomness in Figure

Figure 1: Review star rating vs. Helpfulness Ratio.

Figure 2: Review length (in characters) vs. Helpful-
ness Ratio (to just 200 characters)

5 might seem to go against this point, but by inspect-
ing the review text we see that the very highest indices
mainly happen for very short reviews. For example, the
sample with the highest Comparative Index is

“Good seller, quick delivery, could have put a better
description about book on Web”

So although the graph appears noisy, some information
may be encoded when review text length is taken into
account. We also can see the influence of sentence length
on readability as captured by the ARI with the "most
readable" and "least readable" samples:

“This book was fascinating. I could not put it down. I
hope that there will be a sequel.”

“What can I say about this book that hasn’t already
been said? It’s an invaluable resource for both published
and non-published writers alike. The only complaint
I have is that I would have liked to have seen a CN
designation for "Creative Non-Fiction."”

Figure 3: Review length (in characters) vs. Helpful-
ness Ratio

Figure 4: ARI vs. Helpfulness Ratio

PREDICTIVE TASK

We considered two predictive tasks. Predicting the help-
fulness ratio and classifying a review as helpful or not.
The former is a regression task while the latter a clas-
sification task. For the regressive task we decided to
use mean squared error (MSE) for evaluation and both
accuracy and F1 score for the classification task. For
baseline comparisons we use a naive regressor that al-
ways predicts the mean of the training set or the mode
in the case of classification.

LITERATURE

Data Set

Our data set came from McAuley and Leskovec [3]. This
data set was used for rating prediction, product recom-
mendation, and genre discovery. The paper does indeed
have a brief section on review usefulness as well. That
section discusses analysis of review text based on ex-
pected language. As far as we know though, this partic-
ular data set has not yet been used to assess helpfulness
or review quality at length.

Figure 5: Comparative Index vs. Helpfulness Ratio

Previous work with helpfulness
Kim, Pantel et al. [1] studied models of predicting help-
fulness ratings in Amazon reviews. Using MP3 player
and digital camera reviews for their data set, and an
SVM regression as their model, they found that “the
most useful features include the length of the review, its
unigrams, and its product rating.”

They also suggested “the use of comparatives (e.g., more
and better than)” as a feature for potential future work.
We incorporate the use of comparatives as part of our
feature set.

Korfiatis et al.[2] studied models of predicting help-
fulness ratings in Amazon reviews as well, but using
readability features of the review text and a Random
Forests model. They found that readability was corre-
lated with review helpfulness and that readability even
had “a greater effect on the helpfulness ratio of a review
than its length”. For this reason readability is included
as part of our feature set.

Interestingly, the Kim paper found that review score
worked well as a feature for their SVR classifier. This
conflicts with our exploratory analysis that indicated
that there was little correlation between star rating and
helpfulness score. This might be due to differences be-
tween categories, or to interplay between features (ie.
maybe rating becomes relevant when taking other fea-
tures into account).

Other work has been done with regards to reviewer char-
acteristics and subjectivity of the review text [4], but we
did not investigate such features because extracting such
features would have required additional data sets.

RELEVANT FEATURES
Kim et al. found that review rating, review length, and
review text were the most useful features for predicting
helpfulness. In our exploratory analysis we saw a cor-
relation between review length and helpfulness (figures
2 and 3). We also saw that reviews had a lower length
threshold for being informative. We didn’t find any di-

rect relationship between star rating and helpfulness,
but hypothesized that rating might be relevant in con-
juncture with review length. We also explored the use
of features related to the accessibility of the text such as
the readability (ARI) and came up with the Compara-
tiveness Index which measure how comparative a review
is.

For length we used 4 features. We used the text length in
characters which we normalized by dividing it by 1000
and three binary variable indicating whether a review
was short, medium or long. We hoped that the binary
variables would capture the thresholds we saw in the
exploratory analysis (Figures 2, 3).

For the star rating we used vectorized binary features.
We could have used a single numeric feature but we
wanted a more expressive representation.

The following is a list of our features:

• float: Normalized review length (in characters)
• binary: Short review? (< 100 characters)
• binary: Medium review? (100 to 1000 characters)
• binary: Long review? (> 1000 characters)
• Binary 5-tuple: Star rating
• float: CI (Comparativeness)
• float: ARI (Readability)

For the regression model our labels were the helpfulness
ratio (HR), a floating point number between 0 and 1.
For the classification task we labeled a review as helpful
if the HR was larger than 0.8, otherwise as unhelpful.

We also considered using a bag-of-words feature repre-
sentation, but we couldn’t beat our baseline models with
it and it slowed training and processing considerably.

Preprocessing
The text features required a fair amount of pre-processing,
as discussed in the exploration section. Calculating the
comparative index required tokenization and tagging of
the review text. The authors tried various taggers be-
fore settling on a fast enough implementation. Taggers
found in the standard NLTK were orders of magnitude
too slow. We used an implementation of a combined
Brill, regular expression, affix, unigram, bigram, trigram
tagger to process the data efficiently.2

Readability required calculating the number of words
and sentences in the review text. We note that in our
experience calculating the ARI is actually substantially
faster than calculating other indices such as the SMOG,
which requires counting syllables (or the Gunning-Fog
index, for which SMOG is intended as a quicker alter-
native).

MODEL
We looked at two models, SVM and Random Forest, for
both regression and classification tasks.

2See http://streamhacker.com/2010/04/12/pos-tag-nltk-brill-
classifier/

SVM Regression
An linear SVM regressor minimizes [6]

1
2‖w‖

2 + C

l∑
i=1

(χi + χ∗
i),

subject to

yi− < w, xi > −b ≤ ε+ χi

< w, xi > +b− yi ≤ ε+ χ∗
i .

χi, χ∗
i ≥ 0

where C is a penalty parameter, ε the insensitive tube
parameter. Similarly to a SVM classifier the Kernel
trick can be applied to increase the model expressive-
ness. Kim, Pantel et al. [1] predicted helpfulness rating
with a SVM regressor using a radial basis function (rbf)
kernel. Following that we experimented with both a lin-
ear kernel and rbfs. Like them we had the best result
with radial basis functions. An SVM regressor with an
rbf kernel has three hyperparameters; C (the penalty
parameter), γ (the kernel width parameter) and ε the
insensitive tube parameter.

We did a grid search over these parameters trying out
around 50 different possible combinations geometrically
spaced. We quickly ran into scaling issues with this.
The running time seemed to increase quadratically with
the number of samples. To deal with this we decreased
our training set to 30K samples for the parameter tuning
and used 3-fold cross-validation on it. After we found
the best parameters we fitted the model on a set of 100K
samples. Interestingly our best parameters; C = 1, γ =
0.1, epsilon = 0.3 were very close to scikit-learns default
values and performed only a little bit better suggesting
that scikit-learn has good default values.

Our training error and cross-validation error tracked
each other very closely which gave us confidence that
our model wasn’t overfitting the data. This wasn’t sur-
prising since our feature dimension was low. Since we
seemed to have some room for increasing the model com-
plexity we tried increasing the degree of our kernel from
3 to 4 but that gave us worse validation error.

SVM Classification
As the average helpfulness ratio was 80 percent, classi-
fication required care with unbalanced classes. We ex-
perimented with various forms of discretization of the
helpfulness ratio: different splits for a binary classifier
and also a ternary classifier split along the 35 and 65 per-
cent lines for “unhelpful”, “neutral”, and “helpful”. All
of these variants suffered from over guessing the mode
(“helpful”), even when attempting to correct for class
imbalance by adjusting weights inversely proportional
to the class frequencies.

In the end we decided to discretize the helpfulness ratio
into two classes, “unhelpful” and “helpful”, split along
the median ratio of 80 percent helpfulness. This bal-
anced the classes, and also seems reasonable since in

practice we would only want to label truly helpful re-
views as helpful. Helpfulness would likely be used for
the ordering of reviews presented in a user interface.

Tuning of parameters worked similarly to that with the
SVM regression; a grid search yielded values close to the
defaults in the scikit-learn implementation. Scalability
was also an issue as it was with the SVR.

Random Forests
After trying out SVMs for both regression and classi-
fication we decided to test a different model, Random
Forests. These models were used successfully for pre-
dicting helpfulness and sales of Amazon reviews and
products in [4] (where they were shown to outperform
the more commonly used SVMs). The Random Forests
model constructs multiple Decision Trees and by sam-
pling the training set and features differently among the
various constructed trees the variance and risk of over-
fitting is drastically reduced [7]. They can rate feature
importance and are resistant to redundant features [7].
Another great advantage of Random Forests is that they
lend themselves well to parallelization and run blazing
fast on a small feature space. It had no trouble training
the model on 900K samples. Random Forests can be
used both for regression or classification by outputting
either the mean or the mode, respectively, of the deci-
sion trees outputs. We tested Random Forest on both
the regression and classification tasks and got better re-
sults. We used a hold out set of 100K training example
to come up with a good number of decision trees for the
forest. As we increased the number of trees in the for-
est the mse got better but training and predicting with
the model got slower. For this reason we stopped at
150 trees in the forest for the regressor and 100 trees for
the classifier. The biggest disadvantage is that our final
forest of 150 trees took about 6GB of space when saved
to the HD compared to the SVR, which took less than
10MB.

For the classification task we used a gini index criteria
to determine splits.

Unsuccessful attempts
We tried to use bag-of-words (unigrams) features in our
model as suggested in [1]. Bag-of-words model have
been successfully used in sentiment analysis for predict-
ing whether a review is positive or negative [5]. The task
of discerning helpfulness is different but we expected
that bag-of-words features could be indicative of review
quality since some words might be frequently associated
with review quality. We experimented with using differ-
ent vocabulary sizes, with and without term frequency
(tf) scaling, stemming and smoothing. We then trained
a SVM regressor on the features. This model performed
very poorly and we could not get it to beat our base
benchmark MSE, which is the MSE gotten by guess-
ing the average every time. This also increased the di-
mensionality of our features by a lot and slowed down
processing and training considerably. For this reason
we ended up abandoning the bag-of-words in search of
simpler features.

Results and Conclusions
Results
Table 1 shows the performance result on both the regres-
sion task and the classification task. We held out a set of
100K samples during both training and validation and
tested our final models on it. In the case of the SVM
classifier we only used 20K samples from the test set
because it ran so slow. Both Random forests and SVM
regression got a higher mse on the on the test set than
the validation set indicating that there was mild overfit-
ting. Both performed better than the baseline classifiers
(guessing the mode or mean) but Random Forests did
significantly better with 75% accuracy, a .74 F1 score,
and 0.48 MSE.

Table 1: Comparison of Models
Classifier Regression

Accuracy F1 Score MSE
SVM 0.577 0.678 0.0583

Random Forest 0.754 0.737 0.0477
Baseline 0.470 — 0.0847

Important Features
Using the random forest regressor we could estimate
which features were important and how important each
feature was.

Table 2: Comparison of Feature Importance
Feature Importance
Normalized review text length 0.41
Readability (ARI) 0.21
1 star rating 0.15
Comparative Index 0.12
2 or 3 star rating 0.06, 0.04
4 or 5 star rating 0.004, 0.009
Discrete review text lengths < 0.001

Table 2 show the features in order of importance. re-
view text length, readability, comparativeness, and star-
rating. We expected the length and readability to be
important features like we had seen in the literature.
We were quite pleased to see how well the comparative-
ness worked because it had only been mentioned in the
Kim et al. paper as a possible feature.

The prominence of the star rating importance demon-
strates that given other features, star-rating becomes
relevant. It appears that 5 features is unnecessary to
encode most information; if we know that a review is
not 1,2, or 3 stars, then it must be 4 or 5 stars What’s
interesting, is that a one-star review is so important. In
fact, it’s value is 2 to 3 times the value of a two star
review. Thus, a simple binary feature (good review or
bad review) probably isn’t enough to encode all relevant
information for helpfulness.

Future improvements
To improve our result we could have cleaned our data
better before training. The data we used was quite
messy and contained a lot of duplicate reviews. We

removed duplicates for the case when the product ids
matched but later realized that in most cases they
didn’t. These duplicates might have introduced a bias
in the classifier and furthermore might have caused our
test set to be contaminated with already seen samples.
This could mean our test accuracy is too high.

With cleaner data we also could have looked at the tem-
poral aspects of user helpfulness and added temporal
features to our model.

We also were unable to replicate any good results with a
bag-of-words representation like in the Kim paper. This
may be because of our product category (there may be a
larger vocabulary for books in general vs. mp3 players),
but without attempting a model on both categories we
cannot reach any conclusions to that point.

One area with room for improvement could be our
Comparative Index. It lends too much weight to very
short reviews and a slightly more complicated calcula-
tion might be able to attenuate this problem. Perhaps
normalizing with the log(words) instead of just the word
count would have improved our score.

The prominence of the low-star rating features remains
unexplained. Are these one-star ratings helpful, or not
helpful? Long or short? Readable, or use comparatives?
It would be interesting to investigate in exactly which
situations the one-star rating becomes important.

Conclusion
In this paper we considered models for predicting the
helpfulness rating of Amazon book reviews. We exam-
ined features such as the review’s star rating, the length
of the review text, the readability of the review text,
and the amount of comparisons made in the review.
We confirmed the results of previous work that review
length, readability, and rating are relevant features for
predicting helpfulness, and we found that comparisons
also work well as a feature.

We also compared Support Vector Machine and Random
Forests models both for regression and classification,
and reproduced the findings in [4] that Random Forests
perform more accurately with much quicker training.

REFERENCES
1. Kim, S. M., Pantel, P., Chklovski, T., & Pennac-

chiotti, M. (2006, July). Automatically assessing re-
view helpfulness. In Proceedings of the 2006 Con-
ference on Empirical Methods in Natural Language
Processing (pp. 423-430). Association for Computa-
tional Linguistics.

2. Korfiatis, N., García-Bariocanal, E., & Sánchez-
Alonso, S. (2012). Evaluating content quality and
helpfulness of online product reviews: The interplay
of review helpfulness vs. review content. Electronic
Commerce Research and Applications, 11(3), 205-
217.

3. McAuley, J., & Leskovec, J. (2013, October). Hid-

den factors and hidden topics: understanding rating
dimensions with review text. In Proceedings of the
7th ACM conference on Recommender systems (pp.
165-172). ACM.

4. Ghose, A., & Ipeirotis, P. G. (2011). Estimating the
helpfulness and economic impact of product reviews:
Mining text and reviewer characteristics. Knowl-
edge and Data Engineering, IEEE Transactions on,
23(10), 1498-1512.

5. Pang, B., Lee, L., & Vaithyanathan, S. (2002, July).
Thumbs up?: sentiment classification using machine
learning techniques. In Proceedings of the ACL-02
conference on Empirical methods in natural lan-
guage processing-Volume 10 (pp. 79-86). Association
for Computational Linguistics.

6. Smola, A. J., & Schölkopf, B. (2004). A tutorial on
support vector regression. Statistics and computing,
14(3), 199-222.

7. Breiman, L. (2001). Random forests. Machine learn-
ing, 45(1), 5-32.

