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Recommending tags is a one of the more challenging problems in data mining of text. Tagging lets users explore related con-

tent, and is very useful on question answers sites like Stack Overflow, Stack Exchange sites, Quora, internet forums, etc. In this
paper, I tackle the problem of suggesting tags for StackOverflow website by analysing the title and body of the question. I use

perceptron, multinomial naive bayes and linear svm classifier for prediction and compare their performance.

Categories and Subject Descriptors: H.5.2 [Data Mining]: Recommender Systems, Machine Learning—

1. INTRODUCTION

Tags are keywords or terms associated to a piece of information/data that act like meta-data. They are
useful in describing and locating the piece of information. In 2003, Delicious, the social bookmarking
website, allowed its users to add tags to their bookmarks to group related bookmarks. Flickr added a
similar feature for tagging images, which greatly improved image search. The success of tags started
a trend where more and more sites began to use them to identify related content. Today tags can be
found on a variety of websites like Twitter, Youtube, internet forums, etc.

In this paper, I focus on StackOverflow and the tags related to questions posted on the site. Stack-
Overflow is the most popular site available today for software developers to post technical questions
and get answers from the community. StackOverflow uses tags to suggest users related questions. My
objective is to build a model that can accurately recommend tags for a new question, given a large
corpus of questions with existing tags.

2. DATASET

The dataset of questions is obtained from a Kaggle competition [FB-Kaggle 2013] . The training set is
7 GB in size. The dataset contains over 6,034,195 questions and 42,049 unique tags. The test set is 2
GB in size and contains over 2 million questions. Each question in the training set contains four data
points - id, title, body and tags (figure 1).

Tags c# java php javascript android jquery c++ python iphone asp.net

Occurrence 7.721% 6.7976% 6.5184% 6.0624% 5.3306% 5.0346% 3.3182% 3.1192% 3.061% 2.927%

Table I. : Top 10 tags

The distribution of tag frequency, shown in figure 2, seems to follow the power law. The top 10 tags
and their percentage occurrence is shown in table I. The top 20 tags were {c#, java, php, javascript,
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Fig. 1: One of the training examples

Fig. 2: Tag Frequency distribution(top 600 tags)

android, jquery, c++, python, iphone, asp.net, mysql, html, .net, ios, objective-c, sql, css, linux, ruby-on-
rails, windows}. The majority of the most frequent tags were programming languages. In the unpro-
cessed data, the total number of unique words was 33,235,535.

3. PREDICTION TASK

The objective is to predict the tags for a question by analysing the title and body of a question. Given
the large size of the dataset, I use the first 500K data points, and predicted the top 20 tags for each
question. The top 20 tags were identified from the training set. I used supervised learning, with a
75%:25% split between training and test set.

To evaluate the performance of a model, I calculated the error rate and F1 score for prediction on the
test set. The F1 score is given by

F1 =
2 · precision · recall
precision + recall

I decided to use the perceptron algorithm as the baseline.

4. PREVIOUS WORK

There has been some prior research on predicting tags for StackOverflow. [Kuo 2011] used a co-
occurrence model that predicts tags based on token in the question title and body, and their co-
occurrence to tags. One of the tasks in the ECML PKDD Discovery Challenge 2009 was online tag
recommendations (but not on the StackOverflow dataset). The winning solution [Lipczak et al. 2009] of
the challenge used a 3 stage tag recommender with the second and third stages consisting of modelling
title↔ tag and tag↔ tag relationships using graphs. The tags were predicted after combining scores
from the three stages. [Stanley and Byrne 2013] used a ACT-R based Bayesian probabilisitic model.
The tag probability depends on likelihood of retrieving a tag, given the tag’s prior and by updated by
context. They added an offset term which was not part of the original ACT-R retrieval equation.

5. PREPROCESSING

Given the raw, unprocessed nature of the data, some preprocessing was needed. The text was converted
into lower case. All numbers in the text were trimmed out. Single letter words were trimmed out, ex-
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cept for ‘c’ (to make sure C programming language tag was not affected). Stop words were removed
using the python NLTK library. Words which occurred only once were removed from the vocabulary.
Both common english words and non-common frequent words(‘<p>I’, ‘</p>’, ‘</code></pre>’) were re-
moved. I tried using word stemming to reduce words to their basic form using the NLTK [Loper and
Bird 2002] Snowball stemmer, but didn’t use it in the end due to slight decrease in cross-validation
accuracy. The body often contained multiple XML tags like <a>, <code>, <img> and <ul>. I used the
Beautiful Soup python library [Richardson 2009] to remove these tags. With all of this preprocessing,
the vocabulary size was finally reduced to 73,788 (from the original 33 million) for the training set of
375K samples. Once the data was preprocessed, it was saved to disk to avoid preprocessing on every
run. This helped reduce training time.

6. FEATURES

The title and body of a question was combined into a single string and a bag of words representation
was used to model the text. Essentially, the frequency of each word of the vocabulary in the document
is used as a feature. To improve memory efficiency, sklearn’s Hashing-Vectorizer was used. This vector-
izer does not make use of a dictionary to store the index of words in the vocabulary. Instead, it directly
computes the hash of each word and uses it as the index. Therefore, vocabulary word to index mapping
is no longer required.

I also experimented with a second vectorizer – Tf-idf (term frequency – inverse document frequency).
Tf-idf is a method to measure the importance of a word in a document based on how frequently it
appears in multiple documents. The motivation behind tf-idf is that if a word occurs frequently in
multiple documents belonging to different categories, it is not very useful in distinguishing between
the documents and therefore its tf-idf score is low. The tf-idf weight W of a term t in a document d
(from N total documents) is given by:

Wt,d = (1 + log(tft,d))× log10(
N

dft
)

where tft,d is the frequency of term t in document d and dft is the document frequency of documents
containing the term t.

I also observed that a 56% percent of the questions contained the <code> tag, i.e., they contained
some code fragment. I decided to use this as a feature instead of discarding it completely. I tried
to determine the language given a fragment of code. I used the pygments python library’s lexer to
guess the programming language. Pygment’s lexer can guess 90+ languages. The lexer returns a list
of detected languages (multiple languages were returned when the lexer wasn’t confident about a
single language). I created a bag of words representation using the detected language names for each
example. This representation was added as a feature.

Finally I added 2 other binary features based on whether the question text contains a link (<a> tag)
and code(<code> tag). The has-code feature was added on top of the bag-of-words code-language feature
because the pygments code lexer was not always able to identify the language. The final feature vector
consisted of:

x = {bag-of-words/tf-idf vector, has-url, has-code, code-language bag-of-words}



4 •

7. MODEL

I tried three different classifiers for the prediction task - perceptron, multinomial naive bayes and
linear SVM. I trained 20 classifiers – one for each of the 20 tags. This was required because the tags
are not mutually exclusive. Multiple tags could be associated with each question. To determine the tags
for a question, its content was run through each of the 20 tag classifiers and the result was combined.
The training set was split 75%:25% into training and cross-validation set. The validation set proved
useful in tuning the parameters of the models. The final error rate and F1 score were calculated by
taking the mean values of error rates and F1 scores of the 20 tags.

7.1 Perceptron

Perceptron model was chosen as a baseline. It is a simple model that makes the classification decision
by considering only the base dimension of the feature vector. Perceptron algorithm is one of the earliest
machine learning algorithms. It works by learning a set of weights, which are combined with the
feature vector. The prediction is based on the dot product of feature vector x and weight vector w:

f(x) =

{
1 w · x+ b > 0

0 otherwise

I used sklearn’s implementation of Perceptron classifier. l2 penalty gave better cross validation per-
formance compared to l1.

7.2 Multinomial Naive Bayes

Multinomial Naive Bayes is a basic yet surprisingly accurate classifier for document classification
tasks. Multinomial NB assumes each feature f to be linearly independent and calculates the probabil-
ity of a class by:

cd = argmax
c∈C

[
P (c)

∏
fi∈d

P (fi|c)
]

sklearn’s MultinomialNB implementation was used for the model. Smoothing parameter α = 0.1 was
chosen using cross-validation.

7.3 Linear SVM

Linear SVM is one of the best suited classifiers for this classification task because of its ability to
perform well with high dimensional data (using the ‘kernel’ trick). SVM algorithm works by finding
the maximum separating hyperplane between points of 2 classes in high dimensional space. Another
advantage of Linear SVM is that it scales linearly to the size of training data. For the Linear SVM
classifier, I used sklearn’s LinearSVC class. I used squared hinge loss function as it gave best accuracy
on the cross-validation set. The tolerance for stopping criteria was set to 0.001.

8. RESULTS

The results from the three classifiers are shown in the tables II and IV. Perceptron had the lowest
accuracy while SVM had the highest accuracy for both representations. It is worth noting that all the
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three algorithms performed better with tf-idf representation, reinforcing the claim that tf-idf is well
suited for text classification tasks as it down weights frequently occurring words in documents.

Error F1 Score

Features → Text Only Text + Meta Text Only Text + Meta

Perceptron 4.209% 3.865% 0.3611 0.3711

Multinomial NB 3.535% 3.232% 0.07060 0.3378

Linear SVM 2.467% 2.435% 0.5135 0.5374

Table II. : Results with bag of words representation

Tag Text + Meta Meta

c# 6.986% 7.064%

java 4.274% 4.294%

php 3.38% 3.574%

javascript 4.219% 4.264%

android 1.162% 1.864%

Table III. : Error Rate for top 5 tags using Linear SVM with tf-idf

Error F1 Score

Features → Text Only Text + Meta Text Only Text + Meta

Perceptron 4.050% 3.2177% 0.3659 0.3795

Multinomial NB 3.213% 3.183% 0.3624 0.3500

Linear SVM 2.448% 2.422% 0.5358 0.5448

Table IV. : Results with tf-idf

The use of meta features(hasCode, hasURL, codeLanguage) showed a slight improvement in error
rates – SVM (+0.026%), MNB(+0.03%) and Perceptron(+0.02%) for both tf-idf and bag-of-words. This
is evident even more if we compare error rates for individual tags as seen in table III.

Perceptron performs worse than Multinomial NB maybe because the training data isn’t linearly sep-
arable and contains noise, therefore perceptron can’t find a clear separation. The bag-of-words repre-
sentation doesn’t take into account the relation between words, therefore treats them as independent.
This could be a possible reason for Multinomial NB being able to achieve good results. Linear SVM out-
performs Multinomial NB because of the very high dimensionality of the feature space. It calculates
the best separating hyperplane and gets the best result.

But high accuracy comes with a time-tradeoff. Linear SVM has the highest training time of 15
minutes. Multinomial NB has a training time of 12 minutes for the same training set. This small
difference in training time becomes significant if we consider the entire training data of 6 million
samples and predicting top 200 tags – SVM would take 6 hours longer to train.

I ended up not using stemming since it gave a worse error rate during cross validation. This is
probably because some words lose their feature importance for distinguishing a class when reduced to
their base word.

To scale this model to the entire dataset of 6 million training set and 42000 tags would require
overcoming more challenges. Since the training set would be too big to fit in memory, training will
have to be done in batches, by loading chunks of the training data that would fit in the memory. Linear
SVM using stochastic gradient descent would be a good model for that size of data.
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9. CONCLUSION

Tag recommendation on a large dataset is an open ended problem. I tried three different machine
learning algorithms and evaluated their performance under different feature selection. Linear SVM
using tf-idf representation with meta features gave the best performance with an accuracy of 97.58%
and F1 score of 0.5448. The state-of-the-art model (#1 on Kaggle contest’s public leaderboard) has a F1

score of 0.81, which is much better than my model. Training on the complete 6 million examples would
probably help reduce this gap, but there is room for more improvement.

10. FUTURE WORK

If I had more time, I would have experimented with assigning different weights for words in the title
and body. I could have also tried using LDA to select a smaller set of useful features. I could have
tried working on a larger dataset with Linear SVM + SGD to build a scalable solution. In the future I
would try to implement a multi-stage graph based algorithm that takes into account title ↔ tag and
tag ↔ tag relationships. During my research, I also came across the Vowpal Wabbit algorithm, which
is well suited to this kind of task. VW has an algorithm that shows the relative importance of words in
a documents corpus. This would be very useful to select good features.
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