
Score Prediction of Amazon Video Game Reviews through
Collaborative Filtering Techniques

Pranay Kumar Myana and Kashyap Tumkur

Abstract— In this report, we examine the Amazon Video
Game dataset [4], a corpus of review scores of video game
products. We explore the characteristics of the dataset and
use this to choose the task of predicting the scores of product
reviews. We use collaborative filtering techniques to predict
these review scores and compare the efficacy of naive, bipartite
projection and latent factor models, and improve upon the
results obtained by the bipartite projection approach in [1].
We end the report with a discussion of our observations and
the lessons learned from the project.

I. INTRODUCTION

The Amazon Video Game dataset is a corpus consisting
of 463,668 product reviews spanning a period of 16 years
from February 1997 to March 2013, made available by the
Stanford Network Analysis Project [4].

In the first section, we analyze the data in an exploratory
fashion to understand the available features of each review,
the scope of each of these features, and the relevance of
these features to each other. In the next section, we use this
information to explore the tasks of predicting helpfulness of
a review, as measured by the number of ”helpful” votes a
review has received as a fraction of the total number of the
votes it received. We characterize this notion of helpfulness
in several distinct ways and describe the effectiveness of
these methods.

We next explore the task of predicting the score attached
to a review, which is the focus of this report. We investigate
the correlation of review score with other features such as
helpfulness, the review text, or the product price, and decide
to pursue this task for the purposes of this project.

The third section describes related work in the field,
especially regarding the collaborative filtering techniques
we use. We describe existing research we draw from, and
the results therein that we improve upon.

For the task of score prediction, we begin with a naive
linear model which serves as the baseline for further efforts.
We then implement collaborative filtering techniques of
bipartite projection and latent factor models and observe their
performance on this task and further optimize these models
based on our initial observations. We describe these models
in the fourth section of this report.

Next, we draw conclusions from the results of our
experiments and delineate the reasons for why our
improvements worked (and did not). We also describe
possible suggestions for improvement and future work in

the next section.

Finally, we describe the lessons learned from this project
and the important takeaways obtained from our experiments.

II. EXPLORATORY ANALYSIS

A. The Data

In this section, we examine the characteristics of the data
and the various features of the dataset as a whole. The
463,668 reviews of the Amazon Video Game dataset occupy
463MB of space in uncompressed text format.

Each review contains the following fields:
• ’review/profileName’: the profile name of the

reviewer, usually in colloquial English.
• ’review/time’: the UNIX timestamp of the time

the review was written.
• ’review/helpfulness’: provided as a fraction

with numerator the number of helpful votes and de-
nominator the total of all votes received by the review,
e.g., ”5/11”.

• ’review/summary’: a reviewer-provided summary
of the review in natural language.

• ’review/userId’: the ID of the user, which is
unique across all users in the dataset.

• ’review/score’: the score for the product assigned
by the reviewer, which can vary from 1.0 to 5.0.

• ’review/text’: the natural language text of the
review.

The review data also provides the following information
about the product itself, attached to each review:
• ’product/price’: the price of the product in USD.
• ’product/productId’: the ID of the product,

which is unique across all products in the dataset.
• ’product/title’: the title of the product in

natural language.

Using the ’review/userId’ and
’product/productId’ fields, we observe 228,570
unique user IDs and 21,025 unique product IDs in the
dataset. However, we observe that the ’review/userId’
field can have the value ”unknown”, and a total of 99,128
reviews across the 463,668 reviews in the dataset are
attributed to user ”unknown”. As fitting a model to
”unknown” does not amount to fitting a model for any
particular user, we omit these reviews from the dataset,

leaving us with a total of 364,541 reviews.

Further, for 3970 of the reviews, it is the case that another
previous review for the same product exists by the same
reviewer. For each of these cases, we simply take the latest
review into account and omit the preceding reviews. This
brings us to a total of 360,571 reviews in our dataset.

We now look at the distribution of reviews across
the users. We notice that aside from two power users,
”A3V6Z4RCDGRC44” and ”AJKWF4W7QD4NS” with
750 and 529 reviews respectively, all the users have lesser
than 300 reviews. The number of users falls even lower
as we lower the number of reviews: there are only 132 of
228,569 users with at least 50 reviews, and the remaining
users are shown in Fig. 1 (since this is much easier to
visualize than across the entire range of reviews, which
results in a far emptier graph). The spike at number of
reviews equal to 1 corresponds to 180,139 of all users,
which is almost 80% of all users. Fig. 2 depicts the entire
distribution as a heat map.

Fig. 1. Distribution of Reviews across Users

Similarly, we also look at the distribution of reviews across
products. Four products, ”B000FKBCX4”, ”B000B9RI0K”,
”B000N5Z2L4”, and ”B0009VXBAQ” have between
2000 to 3300 reviews each, with all other products
having far lesser than 2000 reviews. Again, we choose a
handy threshold value of 200 reviews for visualizing this
distribution. All but 331 of the products have reviews less
than 200, which are shown in Fig. 3. In this case, there is
a more gradual dropoff, with 3,925 products having only
1 review, 6,279 having at most 2 reviews, and 13,544 of
21,025 products having at most 10 reviews. Fig. 4 depicts
the entire distribution as a heat map.

From the heat maps, we notice that the dataset is very
sparse with information about specific users, with their
opinion about only one product being known for a majority
of the users. The information for products is more detailed,

Fig. 2. Distribution of Reviews across Users

Fig. 3. Distribution of Reviews across Products

Fig. 4. Distribution of Reviews across Products

with products having an average of 22.05 reviews with a
median value of 6.0.

B. Helpfulness

In this subsection, we examine the representation of
helpfulness of a review. The dataset, by default, provides
helpfulness as a fraction, #helpful/#total, where
#helpful is the number of ”helpful” votes received by a
review, and #total is the total number of votes received
by the review (i.e., including the votes that did not rate the
review ”helpful”.)

However, simply using the ratio of #helpful to #total
renders the same weight of a review with #helpful =
#total = 1 and #helpful = #total = 100. We would
like to increase the weight given to factors such as the
total number of votes cast, or the fraction of users who
found the review more helpful than not. Therefore, given
#helpful and #total, we look at the following different
possible metrics of helpfulness that can be used to represent
the data better. In a later section, we fit models to each of
these metrics to observe the advantages and disadvantages
of each quantitatively.
• #helpful

#total : the simplest ratio. We plot the distribution
of reviews with this metric in Fig. 5. We notice that

Fig. 5. Distribution of Reviews with Helpfulness

there are unusually high spikes at Helpfulness = 0.0
and Helpfulness = 1.1. This indicates that it is likely
that many reviews only have 1 vote (or similarly low
values), and the heplfulness of that vote swings the
entire ratio of helpfulness of the review. Our plot in Fig
6 corroborates this. Specifically, 56% of reviews have
votes in the range of 1 to 5. Further, most of the votes
allotted to these reviews with small numbers of votes
are ”helpful”, resulting in the large spike at helpfulness
= 1.0. However, this does not imply that the review will
be helpful to the general public.

• #helpful
#total ∗ log(#total+1): which increases the weight

given to the total number of votes, so that we do not
have the issues seen with Metric #1. This distribution

Fig. 6. Distribution of Reviews with # votes

is shown in Fig. 7. However, this metric results in only
a representation of ”helpful”, and no way to quantify
that a review is ”not helpful”. We address this issue in
Metric #3.

Fig. 7. Distribution of Reviews with Helpfulness

• #helpful−#notHelpful
#total) ∗ log(#total + 1): which adds

weight to the degree by which a review is more helpful
to users than not. Here, #notHelpful is simply equal
to (#total −#helpful). This spreads the distribution
over the entire number range, with helpfulness scores
below 0 indicating ”not helpful”, as shown in Fig. 8.

C. Product Price

Another numerical feature that we examine is the price
of a product in our dataset, for all products that do not have
the price field marked ”unknown”. As can be seen from
Fig. 9, the majority of products have low prices (prices <
50). Quantitatively, we find that 77% of all products have a
price lesser than $40.00.

We are interested in exploring the relationship of the price
of a product to the number of reviews it gets. Presumably,

Fig. 8. Distribution of Reviews with Helpfulness

Fig. 9. Distribution of Product Prices

cheaper products are bought more often and by more people,
and thus should receive a correspondingly higher number
of reviews. Fig. 10 displays a heat map of the price of a
product vs. the number of reviews received.

We can make the following observations from this heat
map:
• There is a high concentration of products with very low

prices and with very low number of reviews, which is
primarily due to the high number of products with low
prices.

• While there seems to be a trend of the number of
reviews decreasing with the increase in price, it is also
not possible to conclude that it is the case due to the
extremely high number of low-priced prices against
high-priced process.

D. Pairwise Correlations of Features

We explore the correlations between pairs of features that
appear likely to be related. While the dataset does not lend
itself to many correlations in data, one of the interesting

Fig. 10. Distribution of Reviews with Price

correlations was that of the length of the review text with
the review score.

It is presumable that the more interested a reviewer is
in a product, they are more likely to write longer reviews.
However, from Fig. 11, we observe that there is a large
concentration of reviews with high (4 or 5) scores with
very little text at all (close to 0). This indicates that many
reviews are perfunctory and that the reviewer found the score
a sufficient means of expressing his (positive) opinion.//

Fig. 11. Review Length vs. Review Score

In the following section, we use this information to analyze
two predictive tasks and choose the task for the remainder
of our report.

III. IDENTIFYING A PREDICTIVE TASK

In this section, we look at two possible predictive tasks
and analyze these by fitting basic models to them. We then
decide upon one as our focus for the remainder of the report.

A. Helpfulness Prediction

In this section, we consider various features of the dataset
that are likely to affect the helpfulness of a review. We fit
a linear regression model using these features and observe
their performance. We perform this for each of the three
metrics for helpfulness discussed in the previous section.

We first consider the impact of the length (number of
words) of the review text on the helpfulness of a review
with the consideration that it is likely that a review is more
helpful the more detailed (and hence the more lengthy) it is.
We observe the following results for each of the helpfulness
metrics:
• A linear regression model fit to helpfulness represented

as #helpful
#total results in a Mean Squared Error (MSE)

of 0.133885. The range of helpfulness scores in data
ranges in [0.0, 1.0] when represented by this metric.

• When the helpfulness is represented as #helpful
#total ∗

log(#total+1), the range of scores in the data also in-
creases to [0.0, 8.372042]. The linear regression model
achieves an MSE of 0.611337 on the data.

• We also represent helpfulness as
#helpful−#notHelpful

#total) ∗ log(#total + 1). This
increases the range of helpfulness scores in data to
[-5.616637, 7.604703]. The linear regression model fit
to this achieves an MSE of 1.593324.

Next, we introduce various features to the linear regression
model with helpfulness represented by the third metric. We
observe the following changes:

1) We introduce the review timestamp as a feature to the
linear regression model. This improves the MSE of the
model to 1.584711.

2) We next introduce the length of the review summary
as well, which improves the MSE of the model to
1.580600.

3) Finally, we introduce the review score as a feature to
the model, which turns out to be highly correlated
with helpfulness. The MSE is improved to 1.51516.

Of these features, we observe that the most highly
correlated feature with helpfulness is the review score.
The weights for (intercept, review length, review times-
tamp, review summary length, review score) turn out to
be (4.938945e-02, 1.903170e-03, -7.138889e-10, 2.576660e-
02, 1.792664e-01) respectively, which correspond to the
correlation of the feature with the helpfulness score. We also
tabulate the MSE and ranges of fitted values in Table I.

B. Review Score Prediction

In this section, we consider the task of predicting the
review score through the review features present in the
dataset. We do so by fitting a linear regression model to the
data and observing the performance of the fitted model.

We fit the following variations of the model:

TABLE I
RESULTS OF HELPFULNESS PREDICTION

Model MSE Range of Helpfulness
Scores in Data

Metric #1 0.133885 [0.0, 1.0]
Metric #2 0.611337 [0.0, 8.372042]
Metric #3 1.593324 [-5.616637, 7.604703]

Metric #4 and all features 1.580600 [-5.616637, 7.604703]

1) We use the features of review length, review times-
tamp, and length of review summary to predict the
score of the review. This results in an MSE of 2.036195
for the data, which contains scores in the range [1.0,
5.0].

2) We next introduce the helpfulness score, as represented
by the third metric in the previous section, as a feature
to the model. Once again, we observe a high degree of
correlation of this feature with the review score, with
the MSE improving to 1.951897.

The weights of the fitted model for (intercept, review
length, review timestamp, length of review summary, help-
fulness score) are (5.08290695e+00, -3.06708772e-04, -
1.09816114e-09, -1.48011700e-02, 2.30938527e-01), which
also indicates the relatively high correlation of review score
with helpfulness. We also tabulate the MSE of the models
in Table II.

TABLE II
RESULTS OF SCORE PREDICTION

Model MSE Range of Scores
Model #1 2.036195 [1.0, 5.0]
Model #2 1.951897 [1.0, 5.0]

Based on these results, we choose the task of predicting
review scores due to the following reasons:

1) The task of review score prediction is challenging and
not easily modeled by the other features in data, which
suggests collaborative filtering techniques as an useful
tool.

2) The task of helpfulness prediction depends on the
metric used to represent it, which is ambiguous.

We choose to predict the review scores through collab-
orative filtering techniques, which do not require explicit
features to be present in the data. Further, the neighborhood-
based approaches of collaborative techniques do not require
the tuning of any hyperparameters, which reduces the com-
plexity in implementing and using the predictive models.

IV. RELATED WORK

We first approach the task of review score prediction using
the neighborhood-approach collaborative filtering technique
as presented in [1]. We use the approach used in [2] where
this model is implemented on Yelp data as a reference. We
modify the similarity metric to a more intuitive metric, which

results in an improvement of our results over that of the
algorithm in [1].

Latent factor models are a popular technique for explain-
ing observed data by uncovering latent features in data ??.
There exist several well-known techniques such as matrix
decomposition. However, such approaches do not apply in
our case due to the sparsity of the dataset, with a majority
of the (user, product) pairs for rating scores missing from
the dataset. Therefore, we opt for a representation of the
problem as an optimization problem; as this turns out to be
non-convex, we solve approximately using the technique of
Alternating Least Squares ??.

V. FEATURE SELECTION

As described in the previous sections, we looked at
various features in the given data and how they correlate
with each other. We were particularly interested in either
predicting helpfulness or predicting review score. We chose
to move forward with review score prediction.

Choosing features for review score prediction is not
straight-forward. Most of the features made available in the
dataset are various attributes of the review. There are only
three features of the product (price, productId, title)
and only one of these features seem to be of use, if any, in
predicting review score for an unseen (user, product) pair.
Review features cannot be used in the prediction, as these
features (in fact, the review itself) will not be available for the
given unseen pair. Hence, we chose to go with collaborative
filtering models which do not need any features (of the user
or the product).

VI. MODEL DESCRIPTION

A. Naive baseline

As a baseline, we used a naive model to predict the score
for a given user-product pair. We model each user u with
a single parameter δu and each product p with a single
parameter δp.

Let µ be the average of all the review scores in the training
data, and βu and βp be the average score of user u and
product p respectively. Then δu and δp are the bias of u and
p, respectively, over the average µ.
δu = βu − µ and δp = βp − µ
δu quantifies the tendency of user u to rate products

above the mean while δp quantifies the tendency of product
p to receive higher scores than others.

The naive prediction model is

r̂u,p = α+ δu + δp (1)

Given a user-product pair this model naively predicts the
score by adding the user and product bias to the average
score.

We observe that all the scores in the dataset are integers,
as shown in Fig. 12. The scores range from 1 to 5. This
can also be verified from Fig. 11. Based on this observation,

we round the score given by the prediction models (naive
baseline as well as the bipartite projection model and its
variations) to the nearest integer (using numpy.round).

Fig. 12. # Reviews vs. Review Score

B. WEIGHTED BIPARTITE PROJECTION

In this section, we describe the algorithm employed in
our collaborative filtering model [[1]].

Collaborative filtering (using neighborhood approach) is
defined as - “a method of making automatic predictions (fil-
tering) about the interests of a user by collecting preferences
or taste information from many users (collaborating). The
underlying assumption of the collaborative filtering approach
is that if a person A has the same opinion as a person B on
an issue, A is more likely to have B’s opinion on a different
issue x than to have the opinion on x of a person chosen
randomly”[[3]].

This definition, in particular, defines user-based
collaborative filtering method. Item-based collaborative
filtering method can be defined in a similar way. In this
report, we focus only on user-based collaborative filtering
approach.

Prediction of the score of user u towards product p is given
by:

r̂u,p = βu + κ

N∑
v=1

sim(u, v)(rv,p − βv) (2)

Recall that βu is the average review score of user u. N is
the total number of users in the data.
sim(u, v) is the similarity measurement between user u

and user v. It is the the way we quantify this similarity,
is what differentiates the numerous collaborative filtering
models (using neighborhood approach). Cosine Similarity,
Pearson Correlation Similarity are some of the well-known
similarity measures in use.

1) Algorithm - Recommendation power: The similarity
metric used in this algorithm is termed Recommendation
Power. Recommendation power of v with respect to u,
RP (u, v),can be interpreted as - “how likely user u is to
choose user v to recommend a product for u”. From this
definition, we can see that RP () is not commutative, i.e.,
RP (u, v) 6= RP (v, u).

We use weighted bipartite projection to evaluate RP (u, v).
If we create a graph with all the users and products as the
vertices, and we have an edge from user u to product p if
and only if u has rated p. This graph is constructed from
the training data. RP values are calculated from this graph,
by projecting the products onto the user-space (hence the
name). User u gives some recommendation power to user
v, if they’ve reviewed the same product p, and the value is
dependent on the scores ru, p and rv,p. We can consider
these scores as weights of the corresponding edges in the
bipartite graph.

Interpretation: User u likes to distribute recommendation
power to users (so that they can recommend products to u),
based on the scoring pattern (the graph). But users are not
connected directly in this bipartite graph as we have edges
only across users and products. So u distributes the power
across all the products he has reviewed (depending on his
review score towards each product) and each product, in turn,
distributes the power it received from u across all the users
that reviewed the product (depending on the review score of
each user towards this product). This explains how RP (u, v)
is evaluated, for every user v.

RP (u, v) =
∑
p

ru,p
Ru
∗ rv,p
Rp

(3)

Ru is the sum of all the review scores given by user u
and Rp is the sum of all the ratings received by product p.

C. VARIATIONS

Looking at the definition of recommendation power in
the above section, RP (u, v), due to product p, is directly
proportional to ru,p and rv,p. Suppose we have ru,p = 1.0,
which means that u clearly does not like the product p.
Consider to other users v and v′ such that rv,p = 5.0
and rv′,p = 1.0. From the above definition, p gives more
recommendation power of u to v than to v′. But we can
clearly see that both u and v′ do not like p whereas v likes
p. It seems more intuitive to give more recommendation
power of u to v′ than to v, as v′ is more similar to u. Thus,
the above definition of recommendation power (similarity)
seems counter-intuitive.

For this reason, we try different variations of
recommendation power to capture similarity, which,
we feel, are more intuitive. And the results show that this
is indeed the case.

We realize that users are more similar when their review
scores for the same item are similar. We experiment with
several variations that are consistent with this idea.
• Variation 1:

RP (u, v) =
∑
p

(5.0− |ru,p − rv,p|
Cp

) (4)

where Cp is the number of reviews for product p.
• Variation 2:

RP (u, v) =
∑
p

(5.0− |(ru,p − βu)− (rv,p − βv)|
Cp

)

(5)
The idea is - instead of using the actual scores, we con-
sider how strong the users’ preference (like or dislike)
is towards the product, which is captured in ru,p − βu.

• Variation 3:

RP (u, v) =
∑
p

|(ru,p − βu) + (rv,p − βv)|
Cp

(6)

This variation tries to capture the similarity in the
preference (like or dislike) of the users u and v towards
the product. Preferences of the same sign (+/like -
/dislike) result in a larger magnitude than preferences
of different signs. One of the issues of this model is
case 1: ru,p − βu = 3, rv,p − βv = −1 has the same
score as case 2: ru,p − βu = 1, rv,p − βv = 1 which
does not seem appropriate.

• Variation 4:

RP (u, v) =
∑
p

exp{−|(ru,p − βu)− (rv,p − βv)|}
Cp

(7)
Here, we use the inverse of the exponential of the
absolute difference in the preferences of u and v. It
achieves the maximum when the preferences are the
same. It also eliminates the issue raised in variation 3,
and also provides a better representation than variation
2.

• Variation 5:
RP (u, v) =∑
p

exp{−|(ru,p − βu)− (rv,p − βv)|} ∗ |(ru,p − βu)|
Cp

(8)
In this variation, the recommendation power given to
user v via product p is weighted by the magnitude of the
preference of u towards p. If u has a strong preference
towards p, it gives a strong signal about u’s preferences
and it has to be sufficiently accounted for. Later, we see
that this variation results in the best performance.

Note: In all these variations the recommendation power
values are normalized such that,

∑
v RP (u, v) = 1, ∀u.

The results of naive baseline model, weighted bipartite
projection and all its variations are presented in TableIII.

From the above table, we can see that bipartite projection
model performs better than the naive model we have for
baseline. The variations we tried improve the performance

TABLE III
RESULTS OF BIPARTITE PROJECTION MODEL AND VARIATIONS

Model MSE MAE
Naive Model 0.8627 0.4429

Bipartite projection 0.8363 0.4141
Variation 1 0.8360 0.4142
Variation 2 0.8359 0.4139
Variation 3 0.8429 0.4193
Variation 4 0.8350 0.4134
Variation 5 0.8349 0.4132

of the model by a small margin. Variation 5 gives the best
performance, and it is not surprising as this model seems the
most appropriate intuitively.

D. LATENT FACTOR MODELS

Latent factor models are a well-known technique for
explaining observed data by uncovering latent features [5].
In this subsection, we aim to fit a latent factor model to the
observed review scores without taking into account any of
the features associated with a review other than the user
and product IDs.

We achieve this by extending the naive model described
above:

r̂u,p = α+ δu + δp (9)

With a latent factor model, we aim to represent the users
and products in the same K-dimensional space, and use
the dot product of these representations as an additional
factor to the model. Each user u is represented by a
K-dimensional vector, γu, and each product p is represented
by a K-dimensional vector, γp. The dot product of the
vectors, γu.γp, is an additional scalar factor to the model as
follows:

r̂u,p = α+ δu + δp + γu.γp (10)

We represent this in the objective function as follows.
Then, we fix α, δu and δp as in the naive model, and
attempt to learn γu and γp for each user u and each product
p respectively. We learn these values using Alternating
Least Squares [6], wherein we first fix γu for all u, learn
the values of γp for all p, and vice versa. We perform
this step repeatedly until a stopping condition (either when
the absolute difference in the errors of two consecutive
iterations falls to 10−7, or a maximum number of iterations)
is satisfied.

arg min
γu,γp

∑
u,i

(r̂u,p −Ru,p), (11)

where Ru,p is the known review score of the (user, product)
pair.

The actual updates of the γu and γp for all u, p are
performed as follows. This also indicates the need for fixing
α, δu and δp values for all u, p.

1) We fix the values of γu for all u. To learn the values
of γp for a particular product p, we go through all
the instances of the training data that involve p. For
each of these instances (u′, p) with all values of u′,
we set γu′ as the features and Ru′,p−α−βu′ −βp as
the target to be predicted. Thus, we obtain the feature
matrix X and targets y, which gives us a linear matrix
equation Xγp = y for which we find the least-squares
solution. The solution thus obtained is the value of γp.
We perform this step for all products p.

2) Similarly, for learning γu for a particular user u, we
first fix the values of γp for all p. We then construct the
feature matrix X as the values of γp′ for all training
instances (u, p′). The respective targets are obtained as
Ru′,p − α − βu − βp′ , as Y . By solving the equation
Xγu = y, we obtain the values of γu. We then repeat
this procedure for all values of u.

3) We perform this procedure repeatedly until the stop-
ping condition is met.

To avoid overfitting the data too closely, we also perform
L2 regularization, which modifies the objective function to
the following:

arg min
γu,γp

∑
u,i

(r̂u,p−Ru,p)+λ(
∑
u

‖γu‖22+
∑
p

‖γp‖22), (12)

where λ is the regularization parameter.

In addition to learning γu and γp, we must tune the values
of the hyperparameters K and λ. We perform this through
grid search over various combinations of values of λ and K
as follows:

1) We divide the dataset into four sections: a training set
of 180,000 reviews, a validation set of 60,000 reviews
for tuning the value of λ, a validation set of 60,000
reviews for tuning the value of K, and a test set of
60,000 reviews for evaluating the performed of the
final model.

2) We vary the value of λ across the range of values
in (0.0001, 0.001, 0.1, 1.0, 100.0, 10000.0). We then
choose the value of λ that obtains the best performance
on the validation set.

3) For each value of λ, we vary the value of K across
the range of values in (1, 2, 4, 8, 16) and observe the
errors.

4) We fix λ and K to the learned values and evaluate
the performance of the model on the test set of data.

We observe the errors on the training scores as λ varies,
depicted in Fig. 13. As expected, the error on the training
set increases with an increase in the value of λ. The error
on the validation set also initially drastically decreases as
regularization increases, and then stabilizes after λ = 0.1.

We also observe the errors on training scores while tuning
K to ensure that the regularization performs as expected,
as depicted in Fig. 15. However, the validation errors while
tuning K do not change very much, as depicted in 16. Thus,

Fig. 13. Training Error vs. log(λ)

Fig. 14. Validation Error vs. log(λ)

while the latent factor model performs better than the naive
baseline, increasing the number of latent factors do not
significantly affect the performance.

With the tuned values of λ = 0.1 and K = 16, we
evaluate the performance of the latent factor model on the
test set. However, we notice that the results display a large
amount of variance, ranging from 0.3 to 1.6, when training
and testing on different splits of the dataset. This is due
to the fact that this dataset lends itself to the ”cold-start”
problem [7], where there exist many users in the test set
with only that review, and about whom nothing else is
known. Further, for users with a low number of reviews
(e.g., less than K) in the training set, the γu fits the data
perfectly and does not generalize well to new data.

Therefore, as compared to this method of modeling user
preferences through an optimization problem as above, we
achieved better results using the neighborhood approach of
collaborative filtering described above.

Fig. 15. Training Error vs. K

Fig. 16. Validation Error vs. K

VII. CONCLUSIONS

We consider “Amazon: Video games” dataset and initially
perform exploratory analysis on the dataset with focus on
review helpfulness and review score. We pick a predictive
task - predict the review score using collaborative filtering
models (that does not use any features).
We construct a naive prediction model to be used as a
baseline and show that weighted bipartite projection model
(neighborhood approach) can be used to improve the perfor-
mance.

We change the similarity metric used in this model,
experiment with various metrics which we feel are
intuitively more appropriate. We also show that using these
metrics also leads to improvement in the results.

Later we also perform Latent Factor Modeling for the
chosen predictive task and show that it can provide results
but it requires more data and also involves tuning a couple
of hyperparameters (k and λ).

VIII. FUTURE WORK

In addition to the work that we have presented in this
report, there are various additions and different approaches
that can be pursued. We briefly discuss some of them in
this section.

Weighted bipartite projection algorithm presented above
can be improved in couple of different ways. Given that the
data is very sparse, we can first cluster the nodes (users and
the products) and dissolve all the nodes in a cluster into
one single cluster and perform bipartite projection on this
reduced graph. The predicted for the cluster of the node (user
/ product) is assigned as the score for that node. One more
extension of the model is to consider multiple hops instead
of a single hop that we used for the ‘projection’ step. The
recommendation power of user u is distributed across other
users via the products reviewed by u. Instead of stopping
here, every user v can distribute the power of u received
by him to the products reviewed by v and so on. All these
extensions are described in [2]

In the Latent factor model that we have presented here,
we can also train βu and βp (along with γu and γp) by
making only slight modification to the optimizing algorithm.
Basically, we have to add an intercept term to the feature
matrices of each of the ALS steps.

Finally, we can evaluate our models on a different dataset
that is not very sparse for a fairer comparison of the models.

REFERENCES

[1] Shang M., Fu Y., Chan D., Personal Recommendation Using Weighted
Bipartite Graph Projection, 2008.

[2] Sumedh Sawant, Collaborative Filtering using Weighted Bipartite
Graph Projection - A Recommender System for Yelp, 2013.

[3] Wikipedia, Collaborative Filtering.
[4] Stanford Network Analysis Project, http://snap.stanford.edu/data/web-

Amazon-links.html.
[5] Ricci, F., Rokach, L., Shapira, B., Kantor, Recommender Systems

Handbook, 2011.
[6] , Y. Hu, Y. Koren, C. volinsky, Collaborative Filtering for Implicit

Feedback Datasets, IEEE International Conference on Data Mining
(ICDM) 2008.

[7] A. Schein, A. Popescul, L. Ungar, D. Pennock, Methods and Metrics
for Cold-Start Recommendations, Proceedings of the 25th Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR 2002).

