
CSE 255 Assignment 1 : Movie Rating Prediction using the
MovieLens dataset

Yashodhan Karandikar
ykarandi@ucsd.edu

1. INTRODUCTION
The goal of this project is to predict the rating given a user
and a movie, using 3 different methods - linear regression
using user and movie features, collaborative filtering and la-
tent factor model [22, 23] on the MovieLens 1M data set [6].
We describe results using each of the 3 models and compare
them with those obtained using the Apache Mahout machine
learning library [1]. We also briefly discuss some results on
restaurant ratings data from the Google Local data set [4].

2. THE MOVIELENS DATA SET
In this section, we introduce the MovieLens 1M data set
[6]. This is a data set of about 1 million ratings from 6040
users on 3900 movies, thus containing around 165 ratings
per user and 256 ratings per movie on an average. Ratings
are integers on a 5-star scale. Each user and each movie is
identified by a unique id. The data set includes information
about the age (7 age groups), gender, occupation (21 types)
and zip code for each user, as well as the title and genre (18
types) for each movie. Each user has at least 20 ratings.

We normalize the ratings so that each rating is in the closed
interval [0, 1]. We perform an exploratory analysis of the
data set by plotting the average rating against user and item
features. This analysis is shown in figures 1, 2, 3, 4.

Figure 1 shows the average rating for each of the age groups.
We observe a slightly increasing trend in the average rating
as the age group of the user increases, suggesting that the
age group of the user might be a useful feature in predicting
movie ratings.

Figure 2 shows the average rating for male users and female
users. We observe a very small difference between the aver-
age ratings for male and female users, suggesting that gender
of the user is not likely to be a useful feature in prediction
of movie ratings.

Figure 3 shows the average rating for users in various occu-

Figure 1: Average rating for different age groups

Figure 2: Average rating for male and female users

pations. We observe that there is a reasonable amount of
variation in the average ratings for various occupations, with
the minimum and maximum average ratings being 0.681257
and 0.757114 respectively. This indicates that the occupa-
tion of the user might be a useful feature in prediction of
ratings.

Figure 4 shows the average rating for various movie genres.
We observe that there is a reasonable amount of variation
in the average ratings for various genres, with the minimum
and maximum average ratings being 0.644848 and 0.815781
respectively. This indicates that the genre of the movie
might be a useful feature in prediction of ratings.

Figure 3: Average rating for various occupations

Figure 4: Average rating for various movie genres

3. MOVIE RATING PREDICTION
In this section we discuss the task of predicting the rating
given a user and a movie. Given a user u and a movie m,
we would like to predict the rating that u will give to m.
Although this problem is closely related to the problem of
recommending the best possible items to a user based on
the user’s previous purchases or reviews, in this work we fo-
cus on accurately predicting the rating itself. Accordingly,
we evaluate the performance of our models using the mean-
squared-error (MSE) [17] and the coefficient of determina-
tion R2 [15] metrics. These are calculated as follows:

MSE =
1

N

N∑
i=1

(f(ui,mi)− r(ui,mi))
2

R2 = 1− MSE

variance in true ratings

where N is the number of examples, ui is the user in the
example i, mi is the movie in the example i, f(ui,mi) is the
predicted rating, r(ui,mi) is the true rating.

The MSE is a useful metric for comparing 2 or more models
on the same data. However, the MSE depends on the vari-
ance in the data and hence by itself is not a good measure
of how well a model explains the data. The R2 value, on the
other hand, is a measure of the fraction of the variance that
is explained by a model, and hence is a better measure of
how well a model explains the data. We report both values
for each model we consider.

As a baseline model, we consider a linear predictor based on
user and item features, which we discuss in section 6.

Further, to confirm the validity of our results, we compare
them with the results obtained using the Apache Mahout
machine learning library [1] on the same data set. Apache
Mahout contains an implementation of an alternating-least-
squares recommender with weighted-λ-regularization (ALS-
WR) [28, 8].

4. RELATED WORK
The MovieLens data set [6, 7] is a data set collected and
made available by the GroupLens Research group [5]. Movie-
Lens is a website for personalized movie recommendations
[10]. The data set contains data from users who joined
MovieLens in the year 2000.

Given a set of users, items and ratings given by some of the
users for some of the items, the task of predicting the rating
for a given user for a given movie has been studied in the lit-
erature in the form of recommender systems, which addition-
ally perform the task of recommending items to users. The
state-of-the-art in recommender systems is based on 2 main
approaches - neighborhood approach and latent factor models
[21, 23]. Both these methods rely only on past user behav-
ior, without using any features about the users or items.
[28] describes an Alternating-Least-Squares with Weighted-
λ-Regularization (ALS-WR) parallel algorithm designed for
the Netflix Prize challenge [11], a well-known competition

for the best algorithm to predict user ratings for films, given
only the previous ratings, without any other information
about the users or films. An alternative to these methods is
content filtering [23], which uses user features (such as age,
gender, etc.) and item features (such as movie genre, cast
etc.) instead of relying on past user behavior.

Neighborhood approaches and latent factor models are gen-
erally more accurate than content-based techniques [23], since
they are domain-free and capture subtle information (such as
a user’s preferences) which is hard to extract using content-
filtering. On the other hand, neighborhood approaches and
latent factor models suffer from the cold start problem i.e.
they are not useful on new users or new items [13].

In this work, we compare 3 models - the first one is a content-
based linear predictor and is described in section 6. The sec-
ond one is a neighborhood model and is described in section
7. The last one is a latent-factor model and is described in
section 8.

5. FEATURES
Sections 6, 7, 8 discuss the 3 models we consider, namely
linear regression, collaborative filtering and latent factor[23,
22]. While collaborative filtering and latent factor models
do not use the additional information about users and items
available in the dataset, the model based on linear regression
relies on this information. As discussed in section 2, the
user’s age and occupation and the movie genre seem to be
useful in predicting the rating that a user will give to a
movie.

The data set includes the user’s age as one of 6 values - 1, 18,
25, 35, 45, 50, 56, which respectively denote the age groups
under 18, 18-24, 25-34, 35-44, 45-49, 50-55, above 56. During
the pre-processing stage, we replace each of these values by
an integer in the interval [0, 6]. When we create the feature
vector for a given user-movie pair, we create one boolean
feature for each age group, where a value of 1 indicates that
the user falls in the corresponding age group. Thus, we have
7 features to represent the user’s age.

The data set includes the user’s occupation as an integer in
the interval [0, 20], where each integer denotes a particular
occupation as given in [7]. When we create the feature vector
for a given user-movie pair, we create one boolean feature
for each occupation, where a value of 1 indicates that the
user’s occupation is the corresponding occupation. Thus, we
have 21 features to represent the user’s occupation.

The data set includes the genres for a movie as a string of
genres separated by ‘|’. Each genre in this string is one of 18
possible genres given in [7]. We represent each genre as an
integer in the interval [0, 17]. When we create the feature
vector for a given user-movie pair, we create one boolean
feature for each genre, where a value of 1 indicates that
the corresponding genre is one of the genres listed for that
movie. Thus, we have 18 features to represent the genres of
the movie.

Similarly, we represent the user’s gender by 2 boolean fea-
tures. Although the user’s gender does not seem to be useful,
we still include it in the features used by the predictor and

expect that the the predictor will learn a weight close to 0
for these 2 features.

We note that though the features just described capture
useful attributes of users and movies, none of these features
capture a sense of compatibility or a match between a user
and a movie. In order to capture this, we define an addi-
tional feature as follows. For a user u, define a vector ug,
where ugi is the average rating given by the user for movies
which include the genre i i.e. the vector ug is the vector
of average ratings given by the user for all the genres. The
length of this vector is G = 18 where is the G is the number
of distinct movie genres in the data set. For a movie m, we
define a vector mg which is just the vector of boolean val-
ues for all genres, denoting the genres listed for that movie.
Then, we compute the dot product of vectors ug and mg and
divide it by the number of genres ng listed for the movie. i.e.
we compute the value (ug ·mg)/ng and use it as a feature in
the linear predictor. The intuition is that the term ug ·mg

tries to capture the match between the user’s preferences for
the specific genres which have been listed for that movie. Di-
viding by the number of genres listed for that movie makes
sure that the case where the user’s average rating is high
for only one of the genres listed for that movie is given less
weight compared to the case where the user’s average rating
is high for all or most of the genres listed for that movie.

We introduce 3 additional features: the average rating given
by user u, the average rating for the movie m and a constant
feature (set to 1) for the intercept. Thus, the total number of
features we use is 7+21+18+2+1+3 = 52. We describe the
linear predictor using these features in the following section.

6. LINEAR PREDICTOR
Using the features described in the previous section, we can
write a linear model as follows:

f(u,m) = Xum · θ

where Xum is the feature vector of length 52 representing
the user-movie pair (u,m) and θ is the set of weights to be
learned.

The error function is defined as follows:

F (θ) =
1

N

N∑
i=1

(r(ui,mi)−Xi · θ)2 + λ

M∑
i=2

θ2
i

where M = 52 is the number of features, λ is the regular-
ization hyper-parameter, Xi is the feature vector represent-
ing the i’th training example. The term

∑M
i=2 θ

2
i penalizes

model complexity and reduces overfitting [14]. Note that we
do not regularize the intercept term. λ is used to control the
trade-off between accuracy and complexity during training.

Then we find the θ which minimizes the error function, as
follows

θ̂ = arg min
θ

1

N

N∑
i=1

(r(ui,mi)−Xi · θ)2 + λ

M∑
i=2

θ2
i

We have the following expressions for the gradient of the
error function with respect to θ:

∂F

∂θ1
=

1

N

N∑
i=1

−2(r(ui,mi)−Xi · θ)

∂F

∂θk
=

1

N

N∑
i=1

2(r(ui,mi)−Xi · θ)(−Xik) + 2λθk

for 2 ≤ k ≤M

We find θ̂ using the implementation of the L-BFGS algo-
rithm[19] included in the SciPy library [20]. Computing the
error function and its gradient with respect to θ is the com-
putational bottleneck during training since the entire train-
ing set with around 640K examples needs to be processed.
In order to speed up this computation, we use Cython with
Numpy [12, 3]. As a result, the entire run consisting of train-
ing as well as making predictions takes about 8 minutes on
a conventional laptop.

We tune the regularization hyper-parameter λ by performing
a line-search over the values (0.0001, 0.001, 0.01, 0.1, ...) and
choosing the value which gives the highest value of R2 on
the validation set. We observe that λ = 0.001 gives the best
results.

To confirm that our gradient computation is correct, we
compute the ratio of the magnitude of the gradient com-
puted numerically using SciPy and the magnitude of the
gradient returned by our implementation. We observe that
the ratio is very close to 1.0, confirming that our gradient
computation is correct.

7. COLLABORATIVE FILTERING
The next model we consider is a collaborative filtering al-
gorithm using an item-oriented approach [24, 27]. We use
the adjusted cosine similarity metric to compute similarity
between items i and j as follows [25]:

sim(i, j) =

∑
u∈U (Ru,i − R̄u)(Ru,j − R̄u)√∑

u∈U (Ru,i − R̄u)2

√∑
u∈U (Ru,j − R̄u)2

Here R̄u is the average of the u’th user’s ratings, Ru,i and
Ru,j are the ratings given by user u to items i and j respec-
tively. U is the set of users which have rated both item i
and item j.

Then, we compute the prediction on an item i for a user u
by computing the weighted sum of the ratings given by the
user on the items similar to i [26].

Pu,i =

∑
all similar items,N (sim(i,N)Ru,N)∑

all similar items, N(|sim(i,N)|)

Here, we can consider the top K most similar items to the
given item i [16]. We observe that setting K to its maximum
possible value, which is the number of items other than i
rated by user u, gives the best results in terms of the R2

value.

The computation of similarity values between items and the
subsequent prediction of ratings using them are the com-
putational bottlenecks involved in scaling the model to a
dataset of size 1 million ratings. Hence, we implement this
model using C++ instead of using a higher level language.
As a result, the entire run over the training, validation and
test sets takes about 5 minutes on a conventional laptop.

8. LATENT-FACTOR
The next model we consider is a latent factor model [23].
Given a user u and a movie i, we predict the rating that the
user will give to the movie as follows:

f(u, i) = α+ βu + βi + γu · γi

where α is a global bias, βu and βi are user and movie bi-
ases respectively. γu and γi are latent factors for user u
and movie m respectively, which will be learned during the
training process. γu and γi are K-dimensional vectors.

The error function F is defined as

F (Θ) =
1

N

∑
u,i

(f(u, i)−Ru,i)2

+ λ(
∑
u

β2
u +

∑
i

β2
i +

∑
u

‖γu‖22 +
∑
i

‖γi‖22) (1)

where Θ = (α, βu, βi, γu, γi) for 1 ≤ u ≤ U and 1 ≤ i ≤ I,
where U is the number of distinct users and I is the number
of distinct movies. The term

∑
u β

2
u +

∑
i β

2
i +

∑
u ‖γu‖

2
2 +∑

i ‖γi‖
2
2 penalizes model complexity and reduces overfit-

ting [13]. Note that we do not regularize the global bias
α. λ is used to control the trade-off between accuracy and
complexity during training.

We find parameters Θ̂ which minimize the error function F
as follows:

Θ̂ = arg min
Θ

1

N

∑
u,i

(f(u, i)−Ru,i)2

+ λ(
∑
u

β2
u +

∑
i

β2
i +

∑
u

‖γu‖22 +
∑
i

‖γi‖22) (2)

We have the following expressions for the gradient of the
error function with respect to Θ:

∂F

∂α
=

1

N

∑
u,i

2(f(u, i)−R(u, i))

∂F

∂βu
=

1

N

∑
i

2(f(u, i)−R(u, i)) + 2λβu

∂F

∂βi
=

1

N

∑
u

2(f(u, i)−R(u, i)) + 2λβi

∂F

∂γuk
=

1

N

∑
i

2(f(u, i)−R(u, i))γik + 2λγuk

∂F

∂γik
=

1

N

∑
i

2(f(u, i)−R(u, i))γuk + 2λγik

As mentioned in [23], there are 2 approaches to solving the
above optimization problem to find Θ - stochastic gradient
descent and alternating least squares (ALS). We use stochas-
tic gradient descent. At the beginning of each iteration, we
randomly sort the training examples and use each exam-
ple to update parameters. We run the algorithm for 1000
iterations (where each iteration is one pass through the en-
tire training set). We observe that the R2 value does not
increase significantly beyond 1000 iterations. In order to
enable the implementation to a large data set we implement
the stochastic gradient descent using C++. As a result, the
entire run completes in under 5 minutes.

We tune the dimensionality K of the latent factors and the
regularization hyper-parameter λ by selecting values which
maximize the R2 on the validation set. We observe that the
values K = 15 and λ = 0.01 give the best results.

To confirm that our gradient computation is correct, we
compute the ratio of the magnitude of the gradient com-
puted numerically using SciPy and the magnitude of the
gradient returned by our implementation. We observe that
the ratio is very close to 1.0, confirming that our gradient
computation is correct.

9. COMPARISON OF THE MODELS
The linear predictor discussed in section 6 is a feature-based
predictor since it uses user features (age, gender, occupa-
tion, etc.) and movie features (genre). In general, feature-
based predictors for rating prediction suffer from the prob-
lem of not having enough features at the granularity required
to capture individual tastes and subtle differences between
items and between users [9]. On the other hand, user and
item features are useful when there is not enough data per
user and per item, or for new users and new items, also
known as the cold-start problem [13].

The collaborative filtering model discussed in section 7 is
known as a neighborhood method in literature [21]. Latent
factor models are more expressive and tend to provide more
accurate results than neighborhood models [21]. Latent fac-
tor models have the ability to capture and learn the latent
factors which encode users’ preferences and items’ charac-
teristics. On the other hand, neighborhood models are rel-
atively simpler and offer more intuitive explanations of the

reasoning behind recommendations [21]. Both models suffer
from the cold-start problem, but give good performance for
users and items with enough data [9].

As mentioned in section 2, the MovieLens data set has enough
data per user and per movie. Hence, the cold-start problem
will not be a concern and we expect the collaborative fil-
tering and latent factor models to perform better than the
linear predictor.

10. RESULTS AND CONCLUSIONS
This section discusses the results of the 3 models discussed
in the previous sections. We divide the data set of around
1M ratings using a 80%-20% split and use the latter as the
test set. The former is further divided using a 80%-20% split
to get the training and validation sets respectively. We run
each of the models on the same training, validation and test
sets for a fair comparison. Table 1 lists the MSE and the R2

values (bold-faced and in brackets) for each of the models.

In order to confirm the validity of our results, we com-
pare them with those obtained using Apache Mahout[1], a
machine learning library. Apache Mahout contains an im-
plementation of an alternating-least-squares recommender
with weighted-λ-regularization (ALS-WR) [28, 8]. The Ma-
hout package contains an example [2] of using Mahout com-
mands to experiment with a recommender system on the
same MovieLens-1M [6] dataset. The original example [2]
in the Mahout package takes the entire ratings file as the
input, creates a training set and a test set using a 90-10 %
split, runs parallel alternating least squares, computes pre-
dictions and recommendations, and reports the Root-Mean-
Square-Error (RMSE) [18]. To enable a fair comparison,
we modify the example in order to make it use the same
training, validation and test sets we use to evaluate our im-
plementations. Further, the example uses the input data as
is, without normalization of the ratings, and hence produces
output ratings in the range 0-5 (we confirm this by printing
out the predicted ratings). The example uses specific val-
ues for hyper-parameters such as the regularization hyper-
parameter λ, dimensionality K of latent factors etc. which
have been tuned for the original data set without normaliza-
tion. Hence, in order to get the best possible results from the
Mahout example, we do not normalize the data before giving
it as an input to the example. Since the RMSE reported by
the example is for the original unnormalized data, we sep-
arately compute the variance of the original unnormalized
ratings, and use it to compute the R2 value obtained by the
example. Thus, we compare our results with those obtained
using the Mahout example in terms of the R2 value. Table
1 lists only the R2 value for the Mahout column.

We observe that our results with the latent factor model are
quite close to those obtained using Mahout’s recommender.
This is expected, since Mahout’s ALS recommender itself is
based on a latent factor model [28, 8]. This confirms the
validity of our results.

The results in table 1 indicate that the latent factor model
performs the best among the 3 models we consider. This
is expected, as mentioned in section 9. We also observe
that the linear predictor performs worse compared to the
other models on the training set. This is also expected, as

mentioned in section 9. However, it gives results comparable
to collaborative filtering on the validation set.

We now analyze the values of the learned model parame-
ters θ of the linear predictor. Figure 5 plots the value of
θi for all 0 ≤ i < 52. We observe that the model is dom-
inated by the first 4 parameter values which correspond to
the constant intercept feature, average user rating for the
given user, average item rating for the given item, and the
value (ug ·mg)/ng as described in section 6. The values indi-
cate that the rating depends much more on these 4 features
compared to the remaining features. Further, note that the
2nd, 3rd and 4th of these features directly attempt to char-
acterize users and movies in terms of ratings, as opposed to
remaining features, which characterize users and movie only
in terms of their attributes, without considering any of the
ratings. This also supports the observation that neighbor-
hood models and latent factor models give more accurate
results than content-based approaches [23], since neighbor-
hood models and latent factor models attempt to describe
users and items based on past ratings, instead of relying on
their attributes.

Figure 5: All parameter values of the trained linear
predictor discussed in section 6

Based on the results, we conclude that latent factor mod-
els tend to perform better than neighborhood approaches
and content-based approaches on the movie rating predic-
tion task, provided there is enough data for each user and
for each movie.

11. RESULTS ON GOOGLE DATA SET
We also evaluate the latent factor model described in 8 on
a data set of restaurant ratings extracted from the Google
Local data set [4]. We extract ratings of restaurants based
on the categories given in the ratings. There are about 4M
restaurant ratings, which we split into parts of sizes 2M, 1M
and 1M for the training, validation and test sets respectively
respectively. The training set of 2M ratings contains ratings
for about 1.1M unique users and 667K unique places. Thus,
there are about 2 ratings per user on an average and about 3
ratings per place on an average, in contrast to the MovieLens
which has many more ratings per user and per movie.

Examples Variance Linear Predictor Collaborative Filtering Latent Factor Mahout ALS
Training 640135 0.049970 0.029748 (0.404688) 0.023681 (0.526092) 0.020354 (0.592680) (0.586866)

Validation 160033 0.049826 0.033429 (0.329085) 0.033488 (0.327886) 0.030545 (0.386954) (0.392062)
Test 200041 0.049818 0.033776 (0.322010) 0.033779 (0.321948) 0.030765 (0.382451) (0.388799)

Table 1: MSE and R2 obtained using the 3 predictors discussed in this work and Mahout’s ALS recommender
on the MovieLens dataset. Values in boldface/brackets are R2 values.

The latent factor model discussed in section 8 gives very high
R2 values on the training set and very low R2 values on the
validation set. This clearly indicates drastic overfitting on
the training data. Increasing the value of the regularization
hyper-parameter decreases the R2 value on the training set
but does not significantly improve results on the validation
set.

This result highlights the limitation of latent factor models
on sparse data with very few ratings per user and per item.

12. REFERENCES
[1] Apache Mahout. http://mahout.apache.org/.

[2] Apache Mahout MovieLens 1M example.
https://github.com/apache/mahout/blob/master/

examples/bin/factorize-movielens-1M.sh.

[3] Cython Tutorials - Working with NumPy.
http://docs.cython.org/src/tutorial/numpy.html.

[4] Google Local dataset. http:
//jmcauley.ucsd.edu/data/googlelocal.tar.gz.

[5] GroupLens. http://grouplens.org/.

[6] GroupLens MovieLens 1M dataset.
http://grouplens.org/datasets/movielens/.

[7] GroupLens MovieLens 1M dataset.
http://files.grouplens.org/datasets/movielens/

ml-1m-README.txt.

[8] Introduction to ALS Recommendations with Hadoop.
https://mahout.apache.org/users/recommender/

intro-als-hadoop.html.

[9] Latent Factor Models for Web Recommender Systems.
http://www.ideal.ece.utexas.edu/seminar/

LatentFactorModels.pdf.

[10] MovieLens. https://movielens.org/.

[11] Netflix Prize.
http://en.wikipedia.org/wiki/Netflix_Prize.

[12] NumPy. http://www.numpy.org/.

[13] Recommender Systems.
http://cseweb.ucsd.edu/~jmcauley/cse255/

slides/lecture5_recommender.pdf.

[14] Supervised Learning - Regression.
http://cseweb.ucsd.edu/~jmcauley/cse255/

slides/lecture1_supervised.pdf.

[15] Wikipedia - coefficient of determination.
http://en.wikipedia.org/wiki/Coefficient_of_

determination.

[16] Wikipedia - collaborative filtering. http://en.
wikipedia.org/wiki/Collaborative_filtering.

[17] Wikipedia - mean squared error. http:
//en.wikipedia.org/wiki/Mean_squared_error.

[18] Wikipedia - root-mean-square-error. http://en.
wikipedia.org/wiki/Root-mean-square_deviation.

[19] R. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited

memory algorithm for bound constrained
optimization. SIAM Journal on Scientific and
Statistical Computing, 16, September 1995.

[20] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open
source scientific tools for Python, 2001–.

[21] Y. Koren. Factor in the neighbors: Scalable and
accurate collaborative filtering. ACM Transactions on
Knowledge Discovery from Data (TKDD), 4, January
2010.

[22] Y. Koren and R. Bell. Advances in collaborative
filtering. Recommender Systems Handbook, 2011.

[23] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42:30–37, August 2009.

[24] G. Linden, B. Smith, and J. York. Amazon.com
recommendations item-to-item collaborative filtering.

[25] B. Sarwar. Item-based collaborative filtering algorithm
- adjusted cosine similarity.
http://www10.org/cdrom/papers/519/node14.html.

[26] B. Sarwar. Item-based collaborative filtering algorithm
- prediction computation - weighted sum.
http://www10.org/cdrom/papers/519/node16.html.

[27] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms.

[28] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan.
Large-scale parallel collaborative filtering for the
netflix prize.

