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Abstract—An image of an eye is known to have a certain
shape, roughly ellipse shaped. And so the Histogram of Oriented
Gradient (HOG) feature is a good descriptor for this type of
detection. In this paper, the eye detector is trained with HOG
features using an Adaptive Boosting (AdaBoost) algorithm to
train and learn a set of weak classifiers. It is shown to work
fairly well although it underperforms when compared to the
detectors included with openCV. However, as will be discussed
in this paper, there is a lot of room for improving the eye detector.

Note to the grader of this paper: The section titles have
a “Task” label with numbers corresponding to the assign-
ment1.pdf instructions to help grade each section. I have tried
my best to keep everything in their corresponding sections.

I. INTRODUCTION

One of the motivations for detecting eyes is to give facial
landmark localization algorithms a better initialization than a
face detector’s box output. Often times, the face detector may
not be able to detect a face due to partial occlusions or wide
variety of poses. The box output size may also have a wide
variation in width and height. In both cases, this will lead to
a poor initialization. Individual component detectors of the
face (such as eyes, nose, and mouth) is used to get a more
accurate initialization than a box representing the face. In
this paper, only the eye detector is presented due to a limited
time frame for the project.

II. RELATED WORK [TASK 1,3]
When it comes to face detection, the Viola and Jones detec-

tor [1] is one of the most well known for being robust and fast.
The method involves extracting Haar-like features, creating an
integral image, and training the features with AdaBoost, and
finally using cascaded classifiers where the complexity of the
classifier increases as it passes each classifier. Eye detectors
have been built around this algorithm and distributed through
openCV, which will be used for comparison.

Dalal and Triggs in [2] uses HOG features for human detec-
tion. In [3], Zhu and Ramanan performs landmark localization
by using the CMU Multi-PIE dataset which contains pictures
of seated people in a controlled environment and lighting.
The provided annotations in this dataset include camera angle
and landmarks on the face. They extract multi-scale HOG
features by rescaling the image at fixed intervals and extracting
the HOG features to generate a feature pyramid. Using the
camera angle annotation, global mixtures are used to capture

the different poses the face can be. This provides the training
with a variety of lighting conditions as well as poses. Using
the learned shape of a face given a mixture model, optimal
sets of detected facial landmarks from the HOG features that
best match a face shape is detected.

The approach in this paper will use HOG features similar to
[3] trained using the AdaBoost algorithm similar to the Viola
and Jones detector [1].

III. DATASET [TASK 1,3]

Although it would have been extremely advantageous to use
the CMU Multi-PIE dataset which has a rich set of lighting
and poses, the annotations between different camera angles
did not contain the same number of annotations. This meant
that some preprocessing of the annotations would have been
needed to figure out which landmark belonged to the eyes,
which would have been a bit time consuming given the time
frame for the project. Instead the Helen dataset [4] is used
along with a 68-point facial landmark annotation provided by
[5][6]. This dataset, containing 2000 images, is chosen for its
wide range of lighting, poses, and expressions, in both indoor
and outdoor environments. An example image of this dataset
along with annotated ground truth facial landmarks are shown
in Figure 1.

Due to the uncontrolled environment of the Helen dataset,
it may contain more than one face, however only one of the
faces are actually annotated. This means that if this set is
used for testing, it may detect eyes on the faces that were not
annotated, requiring manual annotation work to label them as
true positive detections rather than false positive detections.
This is avoided (due to time constraints) by using the Helen
dataset and 10% of the FRGC dataset for the validation test set,
and the remaining 90% of the FRGC dataset as the actual un-
seen test set. The Face Recognition Grand Challenge (FRGC)
dataset used for this paper contains 4950 images with only one
face per image with the same set of annotations provided by
[5][6], however the disadvantage is that it is mostly indoors
in a controlled environment. Given the limited datasets and
annotations availability, the FRGC dataset will be used to
evaluate the performance of the eye detector.

The Helen dataset was originally used for landmark local-
ization, while the FRGC dataset was originally used for face
recognition. There are also other datasets such as XM2VTS,
LFPW, and AFW with their landmarks provided by [5][6]. All



of these datasets have most recently been used in an automatic
facial landmark detection challenge through ibug [5][6].

As in [1][2][3], negative training examples are also needed.
Due to the possibility of faces that are not annotated in the
Helen dataset, the background scenery is unfortunately not
used as negative examples for training since it would be highly
possible to include an eye in the negative training set. Instead
the negative examples from the INRIA Person dataset [2]
are used, which contains 1219 images of scenes without any
people. The INRIA Person dataset has been used in [2][3] as
negative training examples.

Although the number of images are small, and appearing to
not meet the 50,000 minimum datapoint requirement for this
assignment, it can be quickly seen that the training and test
set grows quite large. The positive examples of the training
set will consist of two eyes from each Helen dataset image,
generating a total of 4000 positive training examples. The
negative examples of the training set will consist of all possible
sliding windows with 75% overlap resulting in 1.15 million
negative training examples. In addition to this, as will be
discussed later, additional negative examples are included from
windows around the faces in the Helen dataset, such as around
the eyebrows, nose, mouth, and edges of the face, resulting in
111,264 additional negative training examples.

From looking at these training examples, it is clear the
eyes have strong edges forming a specific shape similar to
an ellipse, while the negative training examples will a variety
of different shapes and edges. Most of the eyes were generally
around 80x160 which is the size of the template that will be
used. This will be the motivation of the design of our model
which will be discussed later in the paper.

In summary, there will be about 4000 positive training
images and 1.26 million negative training images extracted
from the datasets. A lot of negative examples are required
due to the wide range of background scenes that can occur
in an image, while positive examples do not need to be quite
as large in this case since most eyes look the same, generally
speaking. The datasets contain RGB images, however the color
channels are ignored and the images are converted to grayscale
for simplicity with feature extraction.

IV. PREDICTIVE TASK [TASK 2]

The predictive task for this eye detector is to determine
whether a pixel is an eye or not. This will be done by looking
at a window of pixels around the current pixel being analyzed,
extracting features from that window of pixels, then prediction
using the model. The model will be evaluated using the FRGC
test set and the annotated landmarks. A spline interpolation is
applied to the 6 landmarks around the eyes, forming a very
smooth curve surrounding the eye. Any pixels inside this curve
will be considered an eye as ground truth, while any pixels
outside this curve will be considered a non-eye. True positive
rate (TPR) and false positive rate (FPR) given by eq. 1 and 2,
respectively, will be used as measures of performance for the

Fig. 1: Example image and ground truth facial landmarks
from the Helen dataset

model.

TPR =
# of True Positives

# of True Positives + # of False Negatives
(1)

FPR =
# of False Positives

# of False Positives + # of True Negatives
(2)

For comparison, openCV’s built in eye detectors (‘haarcas-
cade eye.xml’ and ‘haarcascade eye tree eyeglasses.xml’)
with the minimum neighbors parameter set to 0. The reason
for setting the minimum neighbors parameter to zero is so
that openCV will not prune out detections based on how many
neighboring detections there are, since that is a post-processing
result of the detections.

The validity of the predictions will be assessed by seeing
how well it performs using the TPR and FPR measures as well
as looking at some of the output detections showing which
pixels were considered an eye. The trained model parameters
will also be analyzed later in this paper to see if it makes
sense.

V. FEATURES [TASK 4]
A. Dataset Preprocessing

Since it was found in the Helen dataset that most eyes were
generally 80x160 on average, positive training examples are
extracted from the image by de-rotating the face so that the
center of the two eyes (each determined by the 6 annotated
landmarks) form a horizontal line. Then a window of pixels,
centered on each eye, with the width calculated based on the
two eye corner landmarks and the height being simply half
the width, is extracted. This window of pixel is then resized
to 80x160, which will minimize the distortion of the original
image, is used as a positive training example. An example of
this can be seen in Figure 3.

Negative training examples are extracted by placing win-
dows (the same size used for the eyes) around each of the



other non-eye landmarks, and resizing to 80x160. An example
of this can be seen in Figure 2. Additional negative training
examples are also extracted from the INRIA Person dataset by
sliding a 80x160 window across the image with 75% overlap.
Each window is extracted as a negative training example.

B. HOG Feature Extraction

As discussed before, the eyes have strong edges close to the
form of an ellipse which will be the main motivation for using
the HOG feature, which describes the strength of an edge as
well as it’s orientation. There has also been success with using
HOG features for facial landmark detection in [2].

Given an image I of size 80x160, the HOG feature is
extracted by taking the gradient of the image along the
horizontal and vertical direction, resulting in two images
(Ix, Iy). The gradient kernel used was [−1, 0, 1] for simplicity
purposes. The pixel (u, v) in the magnitude image (IM ) is
then calculated by eq. 3.

IM (u, v) =

√
[Ix(u, v)]

2
+ [Iy(u, v)]

2 (3)

And the pixel (u,v) in the angle image (IA) is calculated by
eq. 4.

IA(u, v) = tan−1
(
Iy(u, v)

Ix(u, v)

)
(4)

The image is then divided into 5x10 cells, e.g. each cell will
be a 16x16 image, and a normalized weighted histogram of the
angles is generated with 16 bins for each cell. The weighted
part means that instead of adding 1 for each pixel in the cell
that fits in the bin’s angle range, the pixels magnitude is added
instead. The reasoning behind this is that if a pixel had a weak
magnitude (e.g. a weak edge), then it will not contribute as
much to that bin angle compared to a pixel that had a strong
edge. Each cell’s histogram is then normalized such that the
histogram will sum to 1. The resulting feature vector for this
80x160 image is 5x10x16, or 800. An extra feature with a
value of 1 is added as a parameter for the AdaBoost training
algorithm to learn, resulting in a feature vector length of 801.
A visualization of the HOG feature is shown in Figure 3.
Notice that there are 5x10 HOG visualizations per eye and 16
lines per HOG visualization. It is not immediately apparent but
the cells near the edge of the eyes have darker lines (indicating
higher bin count for that angle) along the direction of the edge
of the eye.

VI. MODEL [TASK 5]

The AdaBoost algorithm uses a weak classifier to find
an optimal threshold in one of the data dimensions into
positive and negative. Then after it has found the dimension
and threshold, the weak classifier is called again iteratively,
adjusting more weight to the misclassified examples as it
continues. The end result is a strong classifier made up of
a cascade of weak classifiers represented by eq. 5.

score =

d∑
i=1

αif
′
i (5)

Fig. 3: Example of positive training samples and visualization
of their corresponding HOG features

where d is the dimension of the feature vector f and

f ′i =


1, if dir = 1 & fi ≥ τi

−1, if dir = 1 & fi < τi

−1, if dir = −1 & fi ≥ τi

1, if dir = −1 & fi < τi

(6)

where ‘dir’ basically specifies which binary class the ith

feature, fi, is likely to belong to if it is greater than or equal
to the learned threshold τi.

Generally, if the ‘score’ is positive, then it is classified as a
detection, otherwise it is classified as a no detection. However
for exploratory purposes, the score will be thresholded at
a range of values to generate an ROC (Receiver Operating
Characteristic) curve using the TPR and FPR formulas given
by eq. 1 and 2. Depending on the application, a user may
want to have more detections at the cost of increasing the
false positive rate. This would be true for my future work
where the false positives can be pruned out using neighboring
detections of the same kind (e.g. eye) by checking how dense
the detections are in that area (more likely to be an eye) or
by using the results of other detections (e.g. nose and mouth)
by checking if there’s a nose and mouth beneath the eyes in
a learned face shape model.

The main reason for using AdaBoost is for its success in
the well known Viola and Jones face detector [1] has trained
using AdaBoost [7]. Using HOG features, the AdaBoost will
select the optimal features (e.g. which cell in the image that
was split into 5x10 parts, and which angle the edge should
be facing), find an optimal threshold to decide which class
that feature contributes towards (e.g. how strong the selected
edge was), and a weight to decide how much contribution that
feature should have towards classification.

Originally the model was designed using only the INRIA
Person dataset for the negative examples, however the resulting
model ended up having lots of false positives in other parts
of the face, especially the mouth since it has a similar shape.
The model was improved by including negative examples from
other parts of the face, resulting in a lot fewer false positives
in other areas of the face using the FRGC validation test set.

The next attempt to improve the model was by including
rotated versions of the positive and negative training examples
from the face. This led to an extremely longer training time



Fig. 2: Example of negative training samples extracted from a face

of roughly 17 hours, and a lot more false positive detections
(again through FRGC validation test set). The reasoning for
this is likely due to the difficulty of finding good thresholds
(e.g. boundaries between the two classes) now that rotated
versions of the eyes have been added. The rotated versions
would likely need to be assigned to different classes for this
method to work along with an extension of AdaBoost to multi-
class.

Another possible attempt to improve the detector would
have been to increase the bin width of the histograms, e.g.
changing the number of bins from 16 to 8, in the case that the
bin widths were too narrow to capture the features properly. Or
to change the cell division of the images into either smaller or
larger boxes within the 80x160 image. Due to the long training
times, I did not have enough time to try more methods.

One issue that I ran into was when transitioning from a
computer with 64 GB of ram to only 16 GB of ram during
classification on the test set. The issue was running out of
memory due to my method of classifying all the pixels in
an image all at once, however this problem was solved by
changing the way the features are stored from type double
to type uint8. Since the features stored ranged from 0 to 1
and having all the decimal precision was not necessary at
all, the features were multiplied by 255 then rounded off into
uint8 type. The model’s thresholds were also multiplied by 255
accordingly, there was little to no change in performance as
expected since very precise decimal values were not required.

An SVM classifier was also tested as an alternative model
for its popularity in machine learning and robustness in finding
good boundaries between classes to minimize misclassification
rates. The SVM classifier would fit just as well as the
AdaBoost algorithm for the same reasons with finding good
boundaries in the different feature dimensions. Several values
of the parameter ‘C’ were trained on a subset of the training
set and tested on using the FRGC validation test set. The
AdaBoost classifier does not have any parameters to optimize

with aside from the input features. However a threshold
can be chosen on the AdaBoost score as already discussed,
depending on the application. For comparison with SVM, the
threshold was set to zero for the AdaBoost, also trained on the
same subset of the training dataset and tested on the FRGC
validation test set. The advantage of the SVM classifier is that
it is faster to train, however the AdaBoost classifier was found
to have performed better than the SVM classifier when applied
to the validation test set. Unfortunately training with AdaBoost
does take a couple of hours each time. Because of this, there
was not have enough time to train and optimize both classifiers
using the entire training set. The AdaBoost classifier was
chosen for its better performance through fewer false positives
and higher true positives on the FRGC validation test set, with
both classifiers trained on the smaller training subset. It is not
apparent why the SVM classifier did not perform as well as
the AdaBoost algorithm, it could be due to the AdaBoost’s
boosting portion that helps it perform better although at the
cost of longer training times.

VII. RESULTS [TASK 6]

After training the AdaBoost classifier on the entire training
set with 100 iterations (e.g. 100 αi values will be generated or
100 weak classifiers), the classifier is tested on the FRGC test
set. This is done by essentially sliding a 80x160 window across
the image, extracting the HOG features as it goes along then
classifies the pixel, outputting an AdaBoost classifier score,
resulting in an image of scores. This is repeated for all images
in the test set. A range of thresholds (used to generate varying
TPR vs FPR for the ROC curve) are set on the score to
determine whether it was an eye pixel or a non-eye pixel.
False positives are the sum of all pixels that are not in the
eye but were classified as an eye. True positives, however, are
defined a little differently due to the nature of the detectors. If
there is even a single pixel classified as an eye within the eye,
then it is considered one true positive, regardless of how many



other pixels were classified as eye or non-eye within that eye.
Since there is only one face per image and thus two eyes, there
is at most two True Positives per image. The resulting ROC
curve is shown in Figure 4, along with the TPR and FPR of
the openCV eye detectors. Note that the x-axis has very small
values, but given a 1000x1000 image, and a false positive rate
of 0.01%, that is 200 misclassified pixels.
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Fig. 4: The Receiver Operating Characteristic Curve showing
the TPR vs FPR of the HOG AdaBoost Eye Detector on the
FRGC test set. The openCV eye detectors are also shown as
single points with a fixed TPR and FPR due to a lack of
input arguments that can adjust the TPR vs FPR similar to the
AdaBoost score.

Both openCV detectors still perform considerably better
than the HOG AdaBoost Eye Detector. One immediate dif-
ference between the two detectors is that the openCV eye
detectors are able to detect at different sizes, whereas the
eye detector in this paper was not designed for multi-scale
due to time constraints. In order to implement multi-scale, a
feature pyramid would need to be built as done in [3]. This is
basically done by rescaling the images at fixed intervals and
extracting the features, then checking if any positive detections
were found at any of the scaled resolutions, which is usually
required due the eye detector being trained only on 80x160
windows but in reality the eyes could actually vary in size a
lot.

The AdaBoost Model parameters that classifies the image
as an eye are visualized in Figure 5. The visualization is the
same as 3. These are the main oriented edges that contribute
towards classifying it as an eye. The darker edges have a
stronger contribution or weight. The model basically checks if
these features are present and meet the threshold (which is not
visualized here). Notice that the edges form an ellipse where
the eyes should be, so the parameters actually make a lot of
sense, although it does have some parameters that don’t really
make sense such that those on the upper left corner.

The parameters that classify the image as a non-eye are
visualized in Figure 6. Some of the features here make sense as
some of the angles appear to be perpendicular to the direction
the edges of the eye should generally be in those areas. Notice
here most of these edges though appear to be random and

don’t really form a specific recognizable shape. This is to
be expected since they are some parameters learned from the
shape of the eye as well as a lot of random negative images
of background scenery and other parts of the face. AdaBoost
has found learned those features to consider those as non-eyes
if those are present given the training set.

Fig. 5: AdaBoost Model’s positive detection parameters
visualization

Fig. 6: AdaBoost Model’s negative detection parameters
visualization

VIII. CONCLUSION [TASK 6]

Although the HOG AdaBoost Eye Detector didn’t out-
perform the openCV and instead underperformed, there is
still motivation to continue work. An easy way to improve
performance is by training for more iterations. Due to time
constraints, the AdaBoost was trained on 100 iterations, thus
it is composed of only 100 weak classifiers. If the maximum
number of iterations was set to a larger value or to run until
“convergence”, it could perform better assuming it will not
end up overfitting which has not been seen yet based on the
results of the validation test set and the actual test set.

The model parameters made sense, but not perfectly. More
time being spent on aligning the positive training images as
well as picking a more optimal cell division of the images
would improve performance. It was noticed later that some-
times the eyes are not aligned since some eyes open “taller”
than other eyes. Sometimes the eyes are closed as well. It is
possible for the closed eyes, those may need to be in a separate
class using the feature extraction discussed in this paper. This
would ideally also result in a parameter visualization that
makes more sense.



It was found that at least one image in the INRIA Person
negative training set contained an image of an eye. So From
this, I would say it is fairly robust to mislabeled examples in
the data.

Another issue is that sometimes the eyes are not around a
dimension of 80x160, and so the features may not be represent
the eyes very well because of this. As mentioned before, a
feature pyramid with different levels corresponding to different
scales of the image can solve this problem. There is also the
problem of eyes being rotated, one naive method is to also
create a feature pyramid with different levels corresponding to
different rotations of the image, however I would experiment
with more efficient methods such as using circular cells rather
than square cells so that the features are more rotationally
invariant in order to reduce the number of HOG feature
extractions required.

The false positive rate is the largest problem keeping the
HOG AdaBoost Eye Detector from performing as well as the
openCV eye detectors. This can be seen in Figures 7 and 8.
This can be remedied through adding more negative training
examples by taking the misclassified pixels (of the training
set) and adding the window around that pixel as a negative
training example so that AdaBoost can relearn the parameters
and improve. Notice that some of the other parts of the face
and hair was considered an eye detection. This may be due
to lack of negative training examples in those areas since the
only negative face examples came from where the landmarks
were annotated, which did not include the hair, forehead or
neck. It is a difficult problem for the eye detector, however, to
differentiate between an eye and a mouth sometimes. Perhaps
other types of features will need to be examined or this is left
for the next stage of false positive pruning through the use of
eyes, nose, and mouth component shape matching.

Fig. 7: Example image from FRGC test set
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