
Convolutional Neural Networks-based Plankton Image
Classification System∗

An Zheng
A53095104

anz023@eng.ucsd.edu

Mingyang Wang
A53100579

miw092@eng.ucsd.edu

ABSTRACT
To the marine ecosystem, plankton are vitally significant
for they produce more than half of the primary productivity
on earth and play an irreplaceable role in the global car-
bon cycle. However, most of traditional plankton popula-
tion measuring and monitoring methods become gradually
impractical for they are time consuming and cannot scale
to the granularity required in large-scale studies. Thus we
introduced a machine learning model, convolutional neural
networks, and utilized it to implement an image classifica-
tion system and automate the plankton image identification
process. In the experiment, our classification system’s loga-
rithmic loss in test set was 0.7736, performing much better
than systems using linear model and multi-layer perceptron
model. In addition, the noise resistance ability of our system
was examined by introducing Gaussian noise.

Keywords
Plankton Classification, Convolutional Neural Network, Pa-
rameter Training

1. INTRODUCTION
The plankton population is one of the most important

evaluation factor of marine ecological environment. And
the observation of plankton’ living condition highly relies
on the classification of these plankton. With the observa-
tion tool becoming digitalized and the underwater images
becoming increasingly easier to capture, the image dataset
size in marine research projects grows in an extremely rapid
speed and traditional manual classification methods cannot
satisfy most of these experiments’ requirements anymore.
Thus, in our experiment, we introduced convolutional neu-
ral networks (CNN) into the plankton classification work,
and used a CNN-based classification system to increase the
classification speed.

∗Inspired from Kaggle competition National Data Science
Bowl https://www.kaggle.com/c/datasciencebowl

To guarantee the effectiveness and efficiency of our clas-
sifier, we did three works: (1) Using the invariability of
convolutional neural networks, we augmented our dataset
by rotating and scaling the original pictures to guarantee
that the model is fully trained. (2) We examined the per-
formance of 3-layer, 4-layer and 5-layer convolutional neural
networks respectively and concluded the most suitable struc-
ture for our plankton image dataset. (3) We set comparison
experiments to tune the model parameters such as learning
rate and batch size. In addition, we compared the perfor-
mance of CNN with linear model and multi-layer perceptron
(MLP) model, and proved that our method was the best one
among them, achieving 75.726% accuracy in classification.
At last, our model’s ability of noise resistance was examined
by adding Gaussian noise in the dataset.

In all, we proved that our image classification system was
suitable for the classification of plankton images. It could
help researcher to study larger population of plankton and
enable them to evaluate local environment timely.

2. LITERATURE
Image classification is a complex process including de-

termination of a suitable classification system, selection of
training samples, image preprocessing, feature extraction,
selection of suitable classification approaches, post-classification
processing, and accuracy assessment[8]. Traditionally, sup-
port vector machine classifier[9], maximum likelihood classi-
fier, clustering classifier[3], single layer neural network clas-
sifier[5] are widely used.

In 2012 ImageNet Competition[10], the winner team ob-
tained an error of 0.15315 by deploying convolutional net-
work model[6], while the team in second place used a com-
bination of traditional models and only obtained an error of
0.26172. The results show the convolutional networks have
huge advantages over other traditional models.

According to Lecun[7], multilayer neural networks are good
candidates for image recognition tasks, because they are de-
signed to learn complex, high-dimensional, nonlinear map-
pings from large collections of examples. Moreover, the spe-
cial architecture of shared weights gives convolutional net-
work the ability to outperform the general Multilayer per-
ceptron. With this idea, convolutional networks can model
the real neural network better, the whole complexity of the
network can be reduced, and the number of weight param-
eters in between layers is also reduced. When input data
are in high dimensions, say, images, these advantages are
extraordinary. For example, convolutional networks could
take images as direct input and avoid the process of compli-

https://www.kaggle.com/c/datasciencebowl


cated feature extraction and data reconstruction, as required
by traditional image classification models. Besides, convo-
lutional networks can ensure some degree of shift, scale, and
distortion in variance.

After the Kaggle competition – National Data Science
Bowl [2], in which we obtained our dataset, ended, it turned
out that the winner team defeated other teams by deploy-
ing convolutional networks with many optimizations, as they
shared their solution afterwards[1].

3. DATASET EXPLORATORY ANALYSIS

3.1 Dataset Description
Our dataset contains 160736 plankton images. These im-

age data are collected by Oregon State University’s Hat-
field Marine Science Center and the dataset is available as
part of the Kaggle challenge[2]. In this dataset, there are
121 different species, ranging from the smallest single-celled
protists to copepods, larval fish, and larger jellies, and im-
ages are taken from different orientations within 3-D space.
Each image in the train dataset is manually labeled by a
trained team, and the classification results have been cross-
validated. According to Culverhouse [4], experts are able
to maintain 84-95% self-consistency in labeling difficult im-
ages. In each image, it is guaranteed that there is only one
plankton creature in it.

The sizes of image are various, ranging from 37 x 41 pixels
to 323 x 297 pixels. Hence, it is necessary to pre-process
these images and scale them into the same size so that they
can be processed by CNN model. Here is a sample image:

Figure 1: A fish larvae with medium body.

Take this sample image as an example. It is a gray-scale
image with 96 x 96 pixels, and in each pixel, the value ranges
from 0 to 127. Instead of abstracting features from the im-
age, we take all pixels as features. Namely, for this input
data, there are 9126(=96 x 96) features in all, and every
feature has a value from 0 to 127.

After thoroughly examining the dataset, we find that there
are some images too ambiguous to identify, and labeled as
”unknown” by the experts. Images in this category could
be a source of noise in the model training process and it
requires the model applied to have the ability to handle spe-
cial cases of unidentifiable objects. Also, not every ”plank-
ton creature” in the images is actual creature. Some of them
are sticks, and some are blobs, which are also needed to be
classified separately. In addition, according to the dataset
introduction, because of the special shadowgraph imagery
technique, organisms are at the same size regardless of dis-
tance to the camera, which means creatures can be roughly
differentiated according to their sizes in the images.

In our experiment, we utilized 30336 images to train our
CNN classifier (because Kaggle only provides 30336 images

with labels, and the rest served as test cases), including
27238 images in the training set and 3098 images in the
validation set. The rest images were taken as test set.

3.2 Image Pre-process Method
Since the number of training data we had was compara-

tively limited, it was very necessary to enlarge the training
set with some data pre-process methods, which could help
the model trained better. Specifically, the original data were
processed in the following steps:

Figure 2: Image pre-process procedure.

Firstly, an original image was rotated by 0, 90, 180 and 270
degree in series to generate four new different angle images.
Then each rotated image was filled into a square with blank,
and the geometrical center of this square was the same as
the original image.

Secondly, each image was randomly scaled by 1-1.6 times.
This process was repeated four times. It is noteworthy that
all the parameters in the rotation and scaling transforma-
tions were derived from Sander Dieleman’s expertiment[1].
Here though the size of creatures in image changed slightly,
their classes still could be roughly differentiated according to
their sizes in the images because the scaling range was lim-
ited and corresponded to real size difference of the creatures
in the same species.



Figure 3: CNN-based classification system.

Finally, each image processed after above transformations
was filled into a 96*96 pixels square images. However, if
the image was originally larger than 96*96, its size would be
reduced eight times and then filled into 96*96 pixels.

In addition, another detail was that the gray-scale value
in each pixel was converted from [0,127] into [0,1], in order
to satisfy the requirement of the CNN model we used.

3.3 Evaluation Method
We evaluated the classification results using the following

logarithmic loss equation:

logloss = − 1

N

N∑
i=1

M∑
j=1

yij log(pij)

In this equation, N is the number of images in the test set,
M is the number of categories of data in test set. When the
i-th image is classified into the j-th category, yij equals 1.
Otherwise, yij equals 0. pij is the probability of the i-th im-
age being classified into the j-th category. It is noteworthy
that, to prevent pij being too large in log domain, the value
of pij is processed using the following equation to restrict
the log-value:

pij = max{min{pij , 1− 10−15}, 10−15}

4. MODEL DESCRIPTION
CNN model is a kind of artificial neural network. Com-

pared with other basic artificial neural networks, it is highly
suitable in dealing with image data. It can take original im-
age data as input without complex feature abstraction and

data reconstruction process which are required in the tradi-
tional image classification algorithms. More importantly, it
ensures shift, scale and distortion invariance, enabling this
algorithm performs better than MLP model[7].

A typical CNN model contains three main parts: the con-
volution layer, the sub-sampling layer, and the MLP clas-
sifier. The convolution layer and sub-sampling layer are
stacked alternatively, and the combination of one convolu-
tion layer and one sub-sampling layer is called a CNN layer.
When building a CNN model as an image classifier, one or
multiple CNN layers are needed and connected in series. The
number of CNN layers is highly significant to the classifica-
tion accuracy: if the number is too small, the data features
will not be fully abstracted and utilized in the classifica-
tion process. But when the number of layers is too large,
the run time will increase exponentially and, what is worse,
cause some undesirable training problems such as gradient
vanishing or exploding.

In our experiment, we constructed our CNN-based classi-
fication system as shown in Figure 3 and the functions of a
single CNN layer is described in Figure 4. Image data were
input in the convolution layer after pre-processed. Then af-
ter the convolution, data were sampled and thus the data
dimension was reduced. It is noteworthy that, since the fea-
ture maps were already small enough in layer 3 and layer
4, there was no need to add subsampling layer in these two
layers. After the process above, data generated were input
into a MLP classifier. The parameters in the whole model
were then tuned according to the data labels.



Figure 4: Functions of a single layer.

5. RESULTS

5.1 Runtime Environment
Our CNN model was established using Lua, an efficient

scripting programming language. Torch7 was used as run-
time environment in the experiment. Torch7 is a Matlab-like
environment, containing a large number of machine learning
libraries for users to utilize, including elemental methods of
convolutional neural networks.

5.2 Number of CNN Layers
As mentioned in the previous part, the number of CNN

layer can influence the classification accuracy and running
time on a large scale. Thus, it was essential to decide how
many CNN layer needed when building a CNN model. In
this experiment, we constructed a 3-layer, a 4-layer and a
5-layer CNN model respectively, and used the same dataset
to evaluate their performance. The result is shown in Table
1.

Table 1: Performance of CNNs against number of
layers

Logarithmic Loss Running Time/min
3-layer CNN 1.0644 346
4-layer CNN 0.7736 431
5-layer CNN 1.2901 503

The 3-layer CNN did not perform as well as 4-layer CNN,
because features in data were not fully abstracted and uti-
lized in the 3-layer CNN. However, it seemed a little bit
strange that the 5-layer CNN did not perform as well as
4-layer CNN model neither. After examining the model
parameters in the trained 5-layer CNN model, we found
that, the model suffered from gradient vanishing problem in
the back propagation process, which caused the model was
trained insufficiently. This problem happened because pa-
rameters in each layer decreased exponentially level by level.
And when the parameters in the front layers was too small,
the training process became very slow and finally stopped
before fully trained because of a mechanism, ”early stopping”
we set beforehand. And thus, for our dataset, a 4-layer CNN
model was the most suitable one.

5.3 Batch Size
In the experiment, the mini-batch technique was intro-

duced to prevent that accidental factors were brought in and
then led to the output logarithmic loss fluctuating rapidly.
Instead of tuning the model parameters for every input im-
age, we input a batch of images in the model every time,
calculating the mean value and then tuning the model pa-
rameters using the mean value. The number of images in a
batch was called batch size. An experiment was conducted
to select the most suitable batch size, the result is shown in
Table 2.

Table 2: Performances of CNNs against batch size
Batch Size Logarithmic Loss Running Time/min

32 0.7509 1136
128 0.7736 431
512 0.8164 153

From the experiment result, we can see that 32 images in a
batch was the optimal for our dataset, but it would cost too
much time to train the model if we used this batch size. So
we actually used 128 images in each batch whose logarithmic
loss was only slightly higher than 32 but enabled our system
to complete the classification work in an appropriate and
acceptable time period.

5.4 Learning Rate
Learning rate is another important parameter in model

training. If the learning rate is too large, the pace in every
update will be too large, and can hardly reach the minimum
value. But if the learning rate is too small, the model can be
stuck in a local minimum fast and cannot find more desirable
point anymore.

We conducted an experiment to decide the most suitable
learning rate. The result is shown as in Table 3.

The table shows that 10−3 was the most suitable value
for our experiment. In fact, in our experiment, we applied
a dynamic learning rate. The initial learning rate was 5 ×
10−3. Each time when the gradient descent did not reach
the expectation we set, the learning rate would be reduced
to one fifth of original value.



Table 3: Performances of CNNs against learning
rate

Learning Rate Logarithmic Loss Running Time/min

10−1 1.4536 229

10−2 0.8062 306

10−3 0.7833 410

10−4 0.8898 348

5.5 Model Comparison
We compared the performance of three models in total,

including CNN and two basic models, linear model and MLP
model. The comparison result is shown in Table 4.

Table 4: Performance comparison between models
Algorithm Logarithmic Loss Running Time/min

CNN 0.7736 431
MLP 1.9213 63

Linear 2.4854 19

From the result, we can see that classification system
based on CNN remarkably outperformed linear model and
MLP model, though it took more time to complete the clas-
sification.

5.6 Noise Resistance Test
Finally we tested our model’s ability of the noise resis-

tance: we set four comparison groups, and added 300 (1%
noise), 1500 (5% noise), 3000 (10% noise), 6000 (20% noise)
randomly generated and labeled images into each group.
The test result is shown in Table 5.

Table 5: Noise Resistance Test
Noise Ratio Logarithmic Loss

0% 0.7736
1% 0.7730
5% 0.8809
10% 1.9023
20% 4.8524

From the result we can conclude that, our model was noise
resistant when small amount of noise was added into dataset.
But its performance would suffer a lot when the ratio of noise
was more than 5%.

6. CONCLUSION
In our experiment, we implemented a CNN-based classifi-

cation system to classify the images of plankton, which was
much more efficient than traditional methods. Through ex-
periment and analysis, we can conclude that: (1) Compared
with traditional manual methods and basic machine learn-
ing algorithms such as linear model and MLP model, CNN
model is a more suitable and desirable model in image clas-
sification for our dataset, achieving 0.7736 . (2) The number
of CNN layer cannot be too large or small. For our dataset
and model configuration, four CNN layers is the optimal.
(3) Our system can resist noise to a certain degree, though
when the ratio of noise in the dataset is larger than 5%, the
influence of added noise will gradually become notable in
model performance.

7. REFERENCES
[1] The deep sea.

http://benanne.github.io/2015/03/17/plankton.html.
Accessed: 2015-11-26.

[2] National data science bowl.
https://www.kaggle.com/c/datasciencebowl/data.
Accessed: 2015-11-26.

[3] S. Bandyopadhyay and U. Maulik. Genetic clustering
for automatic evolution of clusters and application to
image classification. Pattern Recognition,
35(6):1197–1208, 2002.

[4] P. F. Culverhouse, R. Williams, B. Reguera, V. Herry,
and S. González-Gil. Do experts make mistakes? a
comparison of human and machine identification of
dinoflagellates. Marine Ecology Progress Series,
247(17-25):5, 2003.

[5] J. A. Fernandes, X. Irigoien, G. Boyra, J. A. Lozano,
and I. Inza. Optimizing the number of classes in
automated zooplankton classification. Journal of
Plankton Research, 31(1):19–29, 2009.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[8] D. Lu and Q. Weng. A survey of image classification
methods and techniques for improving classification
performance. International journal of Remote sensing,
28(5):823–870, 2007.

[9] T. Luo, K. Kramer, S. Samson, A. Remsen, D. B.
Goldgof, L. O. Hall, and T. Hopkins. Active learning
to recognize multiple types of plankton. In Pattern
Recognition, 2004. ICPR 2004. Proceedings of the 17th
International Conference on, volume 3, pages 478–481.
IEEE, 2004.

[10] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV),
115(3):211–252, 2015.

http://benanne.github.io/2015/03/17/plankton.html
https://www.kaggle.com/c/datasciencebowl/data

	Introduction
	Literature
	Dataset Exploratory Analysis
	Dataset Description
	Image Pre-process Method
	Evaluation Method

	Model Description
	Results
	Runtime Environment
	Number of CNN Layers
	Batch Size
	Learning Rate
	Model Comparison
	Noise Resistance Test

	Conclusion
	References

