Rating Prediction for Amazon Movies
A Comparison of Text-Mining and Recommender System Algorithms

Rajiv Pasricha, A11286283
December 1, 2015

1 Introduction

With the proliferation of ecommerce, so-
cial, and media consumption websites in re-
cent years, the task of providing accurate rec-
ommendations has become essential to main-
taining user engagement and improving user
satisfaction. There are a wide variety of rec-
ommender system algorithms intended to solve
these tasks, including content-based, collabo-
rative filtering, and latent factor algorithms.
While these algorithms perform well given ad-
equate data and appropriate rating density,
their performance often suffers on smaller and
sparser datasets.

This is known as the cold-start problem for
recommender systems, and there have been
many recommendation algorithms proposed to
address this issue. One potential approach is
to utilize the text of the review along with the
observed ratings. This takes advantage of text-
mining techniques to extract user sentiment
from relatively few observations, resulting in
improved rating predictions for new users and
items.

In this project, we analyze a dataset consist-
ing of 50,000 movie reviews on Amazon. The
dataset includes the observed ratingona 1-5
scale, along with the text of the user’s review.
As the dataset is quite sparse, these reviews
prove to be valuable in predicting unobserved
ratings.

We train two supervised learning algorithms
on the data, linear regression and logistic re-
gression. These algorithms used a bag-of-
words model of the observed reviews to predict
movie ratings. We also train a latent factor
recommender system on the data, to predict
ratings based on the observed user and item

rating behavior.

After analyzing the results of these algo-
rithms, we se that the simple linear regression
model outperforms all other models, including
the latent factor algorithms which are opti-
mized for this particular task. This matches
our expectations, as we would expect textual
reviews to provide richer and more predictive
features than the observed ratings, especially
given the size and sparsity of our dataset.

In Section 2, we present relevant informa-
tion and statistics about the Amazon movies
dataset. We describe the predictive tasks and
evaluation metrics we used in Section 3, and
the corresponding models in Section 4. Section
5 discusses the results of our algorithms on the
Amazon movies data. Finally, we present re-
lated literature in Section 6, and conclude in
Section 7.

2 Data

In this section, we describe the Amazon
movies dataset, the dataset used for our predic-
tive tasks. This dataset was collected from the
Stanford Network Analysis Project (SNAP)
dataset repository [4]. The original dataset
consists of 7,911,684 reviews, between 889,176
users and 253,059 items. For this project, we
used the first 50,000 reviews from this dataset,
for faster and more efficient computation and
to analyze the performance of our algorithms
on a small, sparse review dataset.

Each example in the dataset contains the fol-
lowing information:

e User ID and Username
e Product ID
e Rating

e Review Helpfulness
e Review Time
o Review Text

2.1 Relevant Statistics

The subset of the movies used for this
project has a total of 50,000 reviews, written
by 36409 users for 1539 items. Some statistics
about the observed reviews are summarized in
Table 1.

Number of 1-star reviews 3868
Number of 2-star reviews 2746
Number of 3-star reviews 4922
Number of 4-star reviews 10507
Number of 5-star reviews 27957
Average review length (words) | 168.51
Average reviews per user 1.373
Average reviews per item 32.489

Table 1: Movies Dataset Statistics

From the data above, we see that the data
is highly biased towards 4 and 5 star reviews.
This is expected as intuitively, people are more
likely to provide feedback for an item if they
feel positively about it.

However, this unbalanced dataset has the
potential to bias our models towards predict-
ing high ratings. For example, a naive algo-
rithm that always predicts a rating of 4 or 5
stars would achieve a prediction accuracy of
0.769. In order to improve prediction per-
formance, two possible approaches would be
to train models with evenly balanced training
sets, or to assign weights such that all rating
values have approximately equal weight.

Also, we see from Table 1 that the average
review length of the reviews in the dataset is
approximately 170 words. In Figure 1, we in-
clude a histogram of the number of words in
each review. We see that the highest number
of movie reviews have lengths around 20 - 30
words. In particular, the count increases from
0 to 30 words, and then slowly declines as the
number of words increases. However, there are
enough reviews with large numbers of words to
significantly influence the mean, shifting it up

to a value of around 170 words. If the average
review has this length, this means that the re-
views should be long enough to extract mean-
ingful information from the words that were
used, enabling successful rating prediction us-
ing the review text.

5000 Histogram of Movie Review Lengths, Less Than 500 Words

Count

200 300
Review Length

Figure 1: Movie Review Lengths

Figures 2 and 3 show the number of reviews
written by each user, and for each item, respec-
tively. For figure 3, the x-axis was truncated
to 20 reviews for ease of visualization. From
these figures, we can see that the vast majority
of users have rated only 1 or 2 items, and very
few have rated 3 or more. On the other hand,
while most items have not been rated many
times, there distribution of the number of ob-
served reviews diminishes much more slowly
than for users’ reviews.

From the distribution of user and item re-
views, we see that there are likely not enough
reviews from each user for a latent factor model
to accurately determine the latent dimensions
behind the observed rating behavior. As a re-
sult, we would expect latent factor models with
fewer dimensions to be less likely to overfit to
the training set, and have improved general-
ization behavior.

Finally, we include two plots of the average
rating given by each user (Figure 4), and as-
sociated with each item (Figure 5). To create
these figures, we calculate the average rating
associated with each user and item, and plot

Number of Reviews per User

35000

Count

4 5 6 7 8 9 10
Number of Reviews

Figure 2: User Review Frequency

Number of Reviews per ltem
350 T T

Count

5 10 15 20
Number of Reviews

Figure 3: Item Review Frequency

these sorted values. From these figures, we see
that over half of all users have given only five
star ratings. We also see that there are very
few users whose average rating values are be-
tween whole numbers. This is due to the spar-
sity of our dataset, and that the vast majority
of users have only rated a single item.

This is contrasted by Figure 5, which shows
the average rating for each item. We see that
the values in this plot increase at a much slower
rate, showing that there are many items that
have been rated numerous times. Also, the
concavity of this graph demonstrates that the
majority of the ratings are 4 or 5 star ratings.
The user graph should display this behavior as

well, if we had created our dataset such that
most users had rated many items.

Average Rating per User

Average Rating

0 5000 10000 15000 20000 25000 30000 35000 40000
User Count

Figure 4: User Average Rating

Average Rating per ltem

o
o

Average Rating
w w & Fd
o w [=] w

N
[5)

200 400 600 800 1000 1200 1400 1600
ltem Count

Figure 5: Item Average Rating

3 Predictive Tasks

Given the Amazon movie review dataset,
our main predictive task is to predict a user’s
rating on a particular movie. This is typi-
cally a task performed best by dedicated rec-
ommender system algorithms. However, due
to the extreme sparsity of the data, we would
like to incorporate a user’s review text into the
rating prediction.

As a result, we decided to solve the rating
prediction problem with a variety of supervised

learning algorithms, which use features from
the text of a user’s review. In particular, we
decided to use linear regression, logistic regres-
sion, and SVMs. Logistic regression and SVMs
are both classification algorithms, so we use
the multiclass classification versions of these
algorithms, treating each rating value as an in-
dividual class.

While the above supervised learning algo-
rithms, both regression and classification, are
able to utilize the text of the review to pre-
dict the ensuing rating, they ignore the interac-
tions and similarities between individual users
and items. As a result, we compare these su-
pervised learning algorithms with latent fac-
tor recommender systems. Latent factor algo-
rithms uncover latent representations of users
and items, and make recommendations based
on the proximity between similar users and
items in this low-dimensional space.

As we are using the review text to predict
rating values, one additional predictive task
we are interested in is gaining a deeper un-
derstanding of the review text itself. This can
be done with Principal Component Analysis
(PCA), which is a dimensionality reduction al-
gorithm that extracts the most salient dimen-
sions from the review text. These dimensions
can then be analyzed to determine the most
important aspects, or topics, in the observed
reviews.

3.1 Evaluation

In order to evaluate these methods, we use
the Mean Squared Error (MSE). The MSE is
defined as:

n

MSE=23Gi-w) ()

i=1

where g; is the predicted value for a particular
example, and y; is its true value. There are
many advantages to using the MSE as an eval-
uation metric. First, it is easy to compute and
differentiate, greatly simplifying many models
which rely on derivative-based algorithms such
as gradient descent.

Also, when compared compared to linear
evaluation metrics such as the Mean Absolute
Error (MAE), the MSE penalizes large magni-
tude errors more severely. As a result, optimal
values of the MSE are obtained when errors of
small magnitude are distributed evenly across
all training examples.

3.2 Baselines

We can derive appropraite baselines for
these predictive tasks from analyzing the algo-
rithms detailed above. In particular, the lin-
ear regression and latent factor recommender
system algorithms provide natural baselines to
attempt.

For linear regression, one baseline is to per-
form a simple linear regression procedure with
no regularization. This is one of the simplest
machine learning algorithms, but has a high
risk of overfitting to the training data.

Latent factor recommender systems include
an offset, bias, and latent factor terms for the
observed users and items. A natural latent fac-
tor baseline is to set the dimensionality of the
latent factor terms to 0. This results in a la-
tent factor model consisting of just an offset
and bias terms. The offset term corresponds
to the global mean rating, and the bias terms
correspond to the average deviation from the
mean for each user and item.

3.3 Data Preprocessing

The original dataset consists of a list of rat-
ings and their corresponding reviews. While
this is sufficient to train a latent factor rec-
ommender system algorithm, which only uses
user and product IDs, additional processing is
required to train models based on the review
text.

First, we notice that many of the reviews in-
clude HTML formatting along with the review
text. While this helps the review be displayed
correctly on Amazon’s website, it does not help
when training a predictive text-based model.
If these HTML tags, such as
 are not
removed, they can become additional words in

our vocabulary, skewing the observed results.

In order to remove these HTML tags, we
use the BeautifulSoup Python library. In par-
ticular, we initialize a BeautifulSoup object
with the text of the review, and then call its
get_text () method to extract the text of the
review with no markup or HTML tags. This
procedure allows to easily process the review’s
text itself, without having to process addi-
tional formatting or markup text.

While there have been some approaches
which endeavor to incorporate HTML and
formatting tags into various predictive tasks,
most algorithms ignore the formatting associ-
ated with the text of a review, which can differ
significantly between different datasets.

After removing the HTML markup tags
from the review text, we convert the review
to lowercase and split it into words. We use a
regular expression in order to reliably extract
individual words, which may be accompanied
by unpredictable spacing or punctuation char-
acters. We use the regular expression ‘\W+’
to split the string along groups of non-word
characters. As a result of this regular expres-
sion, all sequences of characters will be cor-
rectly extracted as individual words, regardless
of the punctuation or spacing between them.
This regular expression also has the effect of
removing the punctuation characters from the
review. However, one downside of this ap-
proach is that it splits words that are meant to
be joined together, such as hyphenated words.
This could impact the predictive power of our
models, as two words joined together may have
a different meaning from when these words are
expressed individually.

After performing the data processing de-
scribed above, we have converted each review
into a list of its constituent words. These words
can then be used to create a bag-of-words rep-
resentation of the review, used by the various
supervised learning models.

4 Models

In this section, we describe the various mod-
els used to predict ratings of the Amazon movie
reviews dataset. In particular, we detail the
formulation, justification, and concerns associ-
ated with each model.

For all models except PCA, we randomly
split the movies dataset into training, valida-
tion, and test sets. In particular, the training
set contains 90% of the data, and the test set
has the other 10%. In addition, the majority
of models require tuning of various regularia-
tion hyperparameters. In order to tune these
hyperparameters, we take 10% of the original
data from the training set to create a validation
set. After determining optimal values for the
hyperparameters, we evaluate the completed
models on the test set, training using 90% of
the original data.

4.1 PCA

In order to understand the approximate top-
ics of the observed reviews, we run Principal
Component Analysis (PCA) on the 50,000 re-
views. PCA is a dimensionality reduction pro-
cedure which determines the dimensions in the
observed data responsible for the highest ob-
served variance. This can be done to create
compressed representations of our data, while
still retaining the information which is mean-
ingful to the original data.

The dimensions which represent the direc-
tions of highest variance in the original data
turn out to be the eigenvectors of the covari-
ance matrix, X, of the original data. If we let
o represent the eigenvectors of the covariance
matrix, we see that the PCA procedure trans-
forms the original datapoints z into the pro-
cessed data points y = px. However, as ¢ has
the same dimensionality as the original data
points, this does not reduce the dimensionality
of our data. To do this, we simply keep the k
dimensions corresponding to the largest eigen-
values of ¥. Using these reduced dimensions,
represented by ¢, we can calculate reduced
dimensionality representations of our original

datapoints yr = prx.

For this project, we are less interested in us-
ing PCA to reduce the dimensionality of our
data, instead we would like to analyze the de-
rived PCA dimensions to determine their char-
acteristics. We first create bag-of-words repre-
sentations of the movie reviews in our dataset,
using the top 5000 most commonly observed
words. We then compute the tf-idf represen-
tations of the bag-of-words vectors, in order
to estimate the relevance of each word to the
document as a whole.

Tf-idf stands for term frequency-inverse doc-
ument frequency, and is a methodology used to
determine the relative importance of each word
in our dictionary. In order to do this, we first
calculate the term frequency and inverse doc-
ument frequency. The term frequency (tf) is
defined as the number of times a word occurs
in a particular review. The inverse document
frequency (idf) is defined as follows:

. N
de:log|{deD:ted}| @)

where N is the total number of reviews in our
dataset, D is our entire dataset of reviews, d
is a particular review in D, and t is the term
we are interested in analyzing. Intuitively, the
idf represents how common term ¢ is across all
documents in our dataset D.

Finally, we calculate the tf-idf score as:

tFidf = tf % idf (3)

In order to train PCA on our dataset,
we use the IncrementalPCA class from the
Scikit Learn library. When using the origi-
nal PCA class, we ran into significant memory
issues which prevented the model from train-
ing successfully. This was due to the inter-
mediate computations in the PCA class which
compute the Singular Value Decomposition
of the entire covariance matrix X. In con-
trast, the IncrementalPCA implements the al-
gorithm from [8] and only requires a constant
memory overhead, regardless of the number of
training examples.

4.2 Linear Regression

The basic linear regression model attempts
to solve the matrix equation

y = X0 (4)

Solving for 6, we arrive at the analytical solu-
tion

0= (XTX)1xTy (5)

In this project, y represents the observed
movie ratings associated with each review.
X represents the bag-of-words feature matrix
generated from the data preprocessing step,
and 6 represents the model’s parameters. We
create the bag-of-words feature matrix using
only the 1000 most commonly observed words.
When running linear regression, we add an ad-
ditional constant feature to the model, which
serves as the model’s offset term enabling it to
fit hyperplanes which do not pass through the
origin.

While this model serves as a good baseline, it
has a tendency to overfit to the data. As a re-
sult, we add an 12-regularization term to limit
the parameter magnitudes and reduce overfit-
ting.

For this formulation of linear regression, an
objective function is defined in terms of the
MSE.

t
arg min —[ly = X03 + A0} (6)
0

This objective function is minimized using an
iterative procedure such as gradient descent.

For this project, we use the Ridge class in
the Scikit Learn library. This allows to train
a linear regression model while specifying an
arbitrary regularization parameter.

4.3 Logistic Regression

While linear regression directly predicts the
rating given a particular review, logistic regres-
sion is a binary classification algorithm, pre-
dicting whether an example belongs to a par-
ticular label or not. In the case of rating pre-
diction, there are many classes that must be

selected between, specifically each possible rat-
ing value. As a result, the typical logistic re-
gression procedure must be adjusted to handle
this multiclass case.

The multiclass logistic regression scheme
used for this project is known as the “one vs
rest” scheme. This involves training individual
binary predictors for each class, which predict
the probability that a particular example will
be a member of a given class. In order to make
a prediction for a new example, the example
is run through each binary predictor, and the
class that has the highest associated probabil-
ity is returned. While this method easily al-
lows us to apply logistic regression to multi-
class problems, it is susceptible to discrepan-
cies in the ratio of positive to negative exam-
ples. Given the uneven distribution of rating
values in our dataset, this could impact the
performance of the logistic regression classifier.

We used the LogisticRegression class in
the Scikit Learn library to train a one vs
rest logistic regression classifier on the Ama-
zon dataset. The objective function associated
with logistic regression is as follows:

= Z—log (1+67Xi'9>+ —X;-0-X0]13
- 0

i yi=
(7)
Iteratively training the sklearn logistic re-
gression classifier was very computation and
memory intensive. As a result, in order to suc-
cessfully complete the model training in a rea-
sonable time, we only used the top 1000 words
from our bag-of-words model as input features
to the algorithm.

4.4 SVM

SVMs are traditionally known as one of
the best supervised learning classification al-
gorithms. We tried to train an SVM classifier
to predict movie ratings from review text, us-
ing Scikit Learn’s SVC class. The multiclass
classification approach used by the SVC class
is known as “one vs one”. Unlike the “one vs
rest” scheme described above for logistic re-
gression, the one vs one scheme trains an indi-
vidual classifier for every pair of output labels,

and selects the label predicted by the most
classifiers.

Due to the large number of classifiers that
must be trained, and due to the time complex-
ity required to train an SVM classifier, we were
unable to compute rating predictions using the
SVM algorithm.

4.5 Latent Factor Model

Latent factor models are one of the most
commonly used and most successful recom-
mender system algorithms. They have a high
level of expressiveness, and can fit a wide vari-
ety of relationships and interdependencies be-
tween various users and items, solely from past
observed rating data.

Intuitively, this problem makes predictions
via dimensionality reduction. Specifically, the
latent factors uncovered during the training
process project the users and items down to
a reduced dimensionality space. In this space,
the items closest to a particular user are given
as recommendations.

Like linear regression, latent factor models
also provide a natural baseline. While typical
latent factor models which have offset, bias,
and user and item factor terms, we can cre-
ate a simplified model with just the offset and
bias terms. The offset term can be interpreted
as representing the average rating throughout
the entire dataset, and the bias terms can be
interpreted as encoding the deviation of each
user and item’s ratings from the global aver-
age. The objective function for this baseline
model can be expressed as follows:

f = Z(a+ﬁu+ﬁz_Ru,z)2+A

u,b

SIS
)

In contrast, the full model incorporates two
additional terms which express the relation-
ships between each user and item. The ob-
jective function for this model can be written

mcclane samurai hulk
connor algren thor
terminator | mcclane | wolverine
marcus katsumoto season
skynet cruise banner
die japan VS
machines japanese episode
salvation emperor X
john watanabe | jeannie
2007 tom zulu

que bella wonka
de sal charlie
la edward factory
y jacob chocolate
en spike burton
es twilight willie
el | pinocchio willy
lo vampire wilder
un moon season
las radio stuart

Table 2: Text dimensions derived from running PCA on Amazon movie reviews

as follows:

F= (a+Bu+Bi+ v — Rui)*+

U,

Mo B+ DB+ D Ill3 + D Il
7 NG

These latent factor models were trained us-
ing HLBFGS, an iterative gradient-based opti-
mization procedure in C++. Unlike the other
supervised learning models, they do not incor-
porate the review text, instead analyzing the
observed users, items and ratings.

5 Results

In this section, we summarize the results of
the algorithms described above.

5.1 PCA

We ran PCA on all reviews in the training
set, using the 5000 most common words in the
vocabulary to create bag-of-words representa-
tions for each example. Once the PCA model
had been trained, we conducted an analysis of
the derived dimensions. In order to determine
an interpretation for each dimension, we cre-
ated example “documents” consisting of just
a single word in the dictionary. We calculated
the PCA projections of these “documents” and
determined which words have the highest val-
ues for each dimension. The results are sum-
marized in Table 2.

From this analysis, we see that although
many of the most common words appear in
multiple dimensions, PCA was able to effec-
tively extract dimensions that correspond to
various movies, genres, and languages. This
demonstrates that even though our dataset is
relatively small at only 50,000 examples, and
we only used the 5000 most common words,
these words still represent important topics
which can be extracted by the PCA procedure.

In order to improve the dimensions gener-
ated by PCA, it would be necessary to run the
algorithm with an increased number of training
examples and features. However, this was not
possible with our dataset due to computation
and memory limitations.

5.2 Linear Regression

The results for the remainder of the mod-
els are summarized in Table 3. From this ta-
ble, we can see that surprisingly, linear regres-
sion performed the best out of all algorithms
that were implemented. This simple algorithm
outperformed the more complicated logistic re-
gression and latent factor models. A possi-
ble interpretation of this result is that due to
the small size and sparsity of our dataset, it
is very difficult for complicated machine learn-
ing models to learn the underlying distribution
without overfitting to the training data. Linear
regression seems to not have this problem. It
is a simple model that assigns weights to each
word, and is able to generalize well to unseen
instances as a result.

Model Test MSE
Baseline Linear Regression 1.088
Regularized Linear Regression 1.088
Regularized Logistic Regression 1.306
Baseline Latent Factor Model 1.216
Latent Factor Model, 5 Dimensions 1.247
Latent Factor Model, 25 Dimensions 1.231
Latent Factor Model, 100 Dimensions 1.183
Latent Factor Model, 250 Dimensions 1.174

Table 3: Text dimensions derived from running PCA on Amazon movie reviews

One additional interesting observation is
that there is no significant difference between
the performance of the baseline and regular-
ized linear regression models. One possible
justification of this is the tf-idf processing of
the bag-of-words representation of the movie
reviews. This processing transformed the data
to approximately the same scale, resulting in
parameters that were of similar magnitudes.
As a result, adding an 12-regularizer did not
significantly change the final parameter vector.

5.3 Logistic Regression

From the results summarized in Table 3,
we see that Logistic Regression performed the
most poorly out of all the models that were
attempted. There are a few possible explana-
tions for this result. First, logistic regression is
a more complicated model than linear regres-
sion, so it has a higher chance of overfitting to
the given training set.

Secondly, logistic regression is intended to be
used in binary classification settings, whereas
in this situation we trained a multiclass predic-
tor. This predictor was trained using the “one
vs rest” prediction scheme, where one model is
trained per output value and the overall pre-
diction is the model that returns the highest
probability.

However, due to the significantly skewed rat-
ings in the training set, most of these models
had a significant imbalance between positive
and negative examples. The model for pre-
dicting a rating of 2.0, for example, had 2746
positive examples and 47254 negative exam-

ples. This significant imbalance also leads to
overfitting, further impairing the model’s abil-
ity to generalize to new examples in the test
set.

5.4 Latent Factor Models

The latent factor model also performed
worse than the linear regression model. This
turned out to be the case for both the low and
high dimensional models. This is due to the in-
creased complexity associated with latent fac-
tor models, which were not able to adequately
generalize given a relatively small and sparse
dataset.

Interestingly, the baseline latent factor
model performed better than latent factor
models with 5 and 25 dimensions. This can be
attributed to the increased number of param-
eters leading to more significant overfitting of
the training data. The simplest model is essen-
tially a linear model with offset and bias terms,
and thus generalizes the best to new user and
item pairs.

However, the latent factor models with 100
and 250 dimensions outperformed the latent
factor baseline and low dimensional models.
This seems counterintuitive, given the signif-
icantly increased model complexity. We would
have expected this increased complexity to
lead to further overfitting, but we actually ob-
served increased performance on the test ex-
amples. One possible explanation for this be-
havior is that the higher dimensional models
encountered a local optimum during the train-
ing process, which happened to pexhibit bet-

ter performance on the test set. Also, the im-
proved performance could also be a function
of the particular random initialization of the
latent factor parameters.

6 Related Work

The methods and applications described in
this project are extensively studied topics. The
linear regression, logistic regression, SVD, and
latent factor models are commonly used ma-
chine learning models, and have been success-
fully applied to a wide variety of problems and
disciplines.

With regards to recommender systems,
there have been a wide variety of proposed al-
gorithms to deal with the cold-start problem.
These algorithms incorporate a variety of ex-
ternal information to help make predictions for
users and items with few observed ratings. [1]
provides an algorithm for making recommen-
dations based on implicit feedback datasets,
such as purchase or browsing history. It does
so by recording and adjusting confidence pa-
rameters for each user and item pair.

In addition, there are recommender system
algorithms which incorporate additional im-
plicit information from users’ social connec-
tions and community memberships. These ad-
ditional data sources are often added as reg-
ularizers, enforcing certain restrictions on the
learned parameters. [6] proposes an algorithm
for socially regularized recommender systems,
enforcing that a user’s factors be similar to
those of his friends. Similarly, [5] introduces
algorithms for recommender systems that are
regularized by community memberships, forc-
ing a user’s latent factors to be similar to those
of other users in the same communities.

Applying supervised learning techniques to
text classification problems is also a well-
studied field. Many regression and classifica-
tion algorithms have been applied to text prob-
lems, and online product reviews in particular.
[2] and [3] train logistic regression models to
highlight review spam, where individuals write
false and misleading reviews in order to achieve

10

some levels of personal gain and profit.

Finally, there has been significant research
into incorporating review text into recom-
mender system algorithms. As previously dis-
cussed, the review text associated with a par-
ticular rating provides useful information that
can help improve rating predictions for new
users and items. [7] demonstrates that com-
bining the latent factors learned by recom-
mender system algorithms and the topics in
review text discovered by topic modeling and
dimensionality reduction techniques results in
significant improvements in performance and
interpretability of results.

7 Conclusions

In this project we analyzed a sigment of the
Amazon movie reviews data, and compared
the performances of latent factor recommender
system models with supervised learning algo-
rithms that incorporated the text of the review
itself. We created bag of words models from
the observed reviews, and used PCA to under-
stand the salient topics present. We trained
linear regression, logistic regression, and la-
tent factor algorithms, and observed that the
best-performing algorithm was linear regres-
sion. This is likely due to the small size and
sparsity of the movie dataset used for this task,
demonstrating that simple algorithms that in-
corporate the text of each review are the most
effective at handling cold-start users and items.

References

[1] Y. Hu, Y. Koren, and C. Volinsky. Col-
laborative filtering for implicit feedback
datasets. In Data Mining, 2008. ICDM’08.
Eighth IEEFE International Conference on,
pages 263-272. IEEE, 2008.

[2] N. Jindal and B. Liu. Review spam de-
tection. In Proceedings of the 16th inter-

national conference on World Wide Web,
pages 1189-1190. ACM, 2007.

3]

N. Jindal and B. Liu. Opinion spam and
analysis. In Proceedings of the 2008 In-
ternational Conference on Web Search and
Data Mining, pages 219-230. ACM, 2008.

J. Leskovec and A. Krevl. SNAP Datasets:
Stanford large network dataset collec-
tion. http://snap.stanford.edu/data,
June 2014.

H. Li, D. Wu, W. Tang, and N. Mamoulis.
Overlapping community regularization for
rating prediction in social recommender
systems. In Proceedings of the 9th
ACM Conference on Recommender Sys-
tems, pages 27-34. ACM, 2015.

H. Ma, D. Zhou, C. Liu, M. R. Lyu, and
I. King. Recommender systems with so-
cial regularization. In Proceedings of the
fourth ACM international conference on

Web search and data mining, pages 287—
296. ACM, 2011.

J. McAuley and J. Leskovec. Hidden fac-
tors and hidden topics: understanding rat-
ing dimensions with review text. In Pro-
ceedings of the Tth ACM conference on Rec-
ommender systems, pages 165—-172. ACM,
2013.

D. A. Ross, J. Lim, R.-S. Lin, and M.-
H. Yang. Incremental learning for robust
visual tracking. International Journal of
Computer Vision, 77(1-3):125-141, 2008.

11

