
	
 1	

“My wife and I hate this place”
A guide on writing humourous Yelp Reviews as learned through n-gram features

Richard Gao
A53073831

December 1, 2015

CSE255 Assignment 2

I. Summary

In the following study, I attempt to model funniness as a function of linguistic
features. The dataset consists of a subset of 1.6 million Yelp business reviews, each of
which can be voted as “funny” by review readers. I design a normalized funniness rating,
or F Index, and predict a review’s hilarity with n-gram features learned through linear
models. The model performs better than baseline, and I observe that the funniest
reviews are apparently those involving terrible businesses, bad owners, and horrific
dining experiences suffered with one’s wife.

	
 2	

II. Dataset Exploration

The dataset in question is a comprehensive
collection of Yelp review data, provided by the
Yelp Dataset Challenge [ref], gathered from
Yelp mobile and web app where users rate
their experience at restaurants and other
businesses. The dataset includes 1.6 million
individual reviews (user-business pair, review
text, star rating, and “votes” for the review),
spanning 60,785 businesses and 366,715 users.

Review Voting

Similar to Amazon’s review helpfulness
rating, each review can be voted as useful,
funny, cool, or any of the combinations
thereof. Unlike Amazon, however, the rating
interface does not allow negative votes (i.e.,
not useful), creating an implicit response bias.

Fig.1 Yelp review rating interface

The reviews for a particular business are

by default displayed in an order based on
“Yelp Sort”, which likely takes into
consideration of various factors such as user
trustworthiness (“Yelp Elite”), review votes,
recentness, etc. Therefore, we would expect to
see a few reviews with many votes and many
reviews with little or no votes, which is
exactly what we observe in the histogram
data, where the straight line in log-log plot
demonstrates an inverse power law (Fig.2). In
addition, the average of the 3 categories for
follows a similar trend. Interestingly, we see
that reviews are more likely to be voted as
funny than as cool or useful, which is
indicated by the total categorical votes (cool:
751,499, funny: 1,681,655, useful: 932,429).

Fig. 2 Histogram data of each type of votes for all

reviews, plotted in log-log scale.

A power law distribution does not
necessarily imply that the rich gets richer, as
it is possible that only a few reviews are truly
useful, funny, or cool. However, when we
observe the pairwise correlations between the
3 rating categories, we see that they are
strongly correlated, suggesting that the
underlying factor leading to high ratings to
any and all 3 of the categories is simply to
gain momentum in popularity. To control for
artificially high correlations related to many 0-
rating reviews, reviews with less than 1 (and
3) total votes coming from any categories were
excluded (834,146 & 392,917 reviews
remained), but strong correlations were still
present.

 C-F C-U F-U

All
reviews

0.732 0.799 0.836

1 or more
votes

0.707 0.778 0.815

3 or more
votes

0.681 0.763 0.809

Table. 1 Pairwise correlation coefficients.
C – cool; F – funny; U - useful

Corpus Analysis

Building a corpus of words from the entire
database yields 804,626 unique words
(unstemmed), 804,499 of which remain after
removing English stopwords. The frequency of
occurrence of words follows an inverse power
law, as expected, and the most common are
stopwords (e.g., ‘the’, ‘and’, ‘I’, etc). Bigrams
follow a similar pattern, though there are
many more bigrams (12.5M) than unigrams.

Fig. 3. 1- & 2-gram frequency

III. Predictive Task

The high-level goal of this exercise is to
learn, from the Yelp review dataset, what
makes a review funny, based on its linguistic
features alone. In another framing: how can
we help an user write a funny review to the
best of their capabilities, given that they
cannot change factors such as their popularity

	
 3	

in the short-term? To decide whether any
model has captured a notion of what’s funny,
we measure how accurately it predicts
“funniness” of unseen data. A subtle but
important point must be noted here: the goal
is not to predict funniness as accurately as
possible, per se, but to do so using only
information from the review text.

As shown in the previous section, the

funniness vote is heavily dependent on various
non-linguistic factors, such as popularity,
reviewer exposure, reviewer history, etc. Two
approaches are possible in dealing with this
issue: the first is to include all possibly
relevant information as input (review date,
location, etc.) and simply use the funniness
vote as the output, relying on the model to
tease out different dependence structures. In
other words, we could look at how much a
good linguistic model improves prediction
accuracy, given all other relevant information.

The second approach is to limit the input

to only text features, and design an output
metric that already accounts for the effects of
non-text features. Here, I take the latter
approach – at the cost of a possibly biased
output label – for a few reasons. First, the
funniness vote scales almost linearly with total
votes number (i.e., exposure), and regressing
for it would answer an interesting, but
different, question, namely: what makes a
review popular. Secondly, with a bit of human
intuition, we should be able to come up with a
relatively independent measure of funniness, as
I outline below. Finally, having comparable
feature types (e.g., word and phrase
occurrences) makes the model easier to
interpret in the end, as we can directly
compare feature weights to judge what’s
commonly thought of as funny.

Fig. 4 Funniness ratio, as normalized by total votes
(left) and max votes (right)

Feature & Output Design
Given that the funny vote scales linearly

with total number of votes, we would like to
use a normalized measure as output instead. I
first explore the effects of normalizing the
categorical vote counts by either the total
votes of all 3 categories, or the maximum vote.
Normalizing by sum caused categorical votes
of popular reviews to converge to 1/3,
effectively suppressing variance for samples
where differences could be most informative,
making it an undesirable option (Fig. 4).
Normalizing by max created a more
independent measure from 0 to 1, though, as
noted earlier, the total number of funny votes
is greater than either of the other two, thus
creating a disproportionate number of samples
with a funniness of 1.

Considering the interface again, we see

that one can cast a vote in any or all three
categories. Thus, if popularity alone were
driving all 3 votes, they would grow at
roughly equal rates. However, if a reader
consciously casts a vote in funny but not in
the others, then we can deem a review to be
funny, or at least more funny than cool/useful.
Therefore, I define the funniness index (F Index)
as how many extra funny votes a review received
compared to the mean, i.e.

𝐹 𝐼𝑛𝑑𝑒𝑥 = 𝑓𝑢𝑛𝑛𝑦 −
(𝑐𝑜𝑜𝑙 + 𝑓𝑢𝑛𝑛𝑦 + 𝑢𝑠𝑒𝑓𝑢𝑙)

3

The F Index is distributed symmetrically

about 1 (Fig. 5). Interestingly, reviews with
more total votes tend not to have extreme
values for F index. This is counter-intuitive as
the more votes a review receives, the larger a
margin can exist, which is seen in the fan-out
pattern when total votes is below 50. One
possible weakness for this measure is that it
does not only measure how funny a review is,
but how not useful it is, comparatively.

Fig. 5 Distribution of F Index (left) and F Index as

a function of sum of votes (right)

	
 4	

Having achieved a satisfactory output
measure, the input features are relatively easy
to build. For this task, I focus on text features
of the reviews, building a corpus of uni-grams
and bi-grams using the entire dataset of 1.6M
reviews. I explore the effect of using different
numbers of dimensions, as well as representing
the input features in different ways, comparing
raw counts to weighted counts (tf-idf).
Obviously, language has sequential structure
and syntax, as well as contextual information,
which is why a phrase like “I can’t even”
might be funny in some cases and perfectly
vanilla in others. As such, an input
representation that retains structure is ideal.
Without using a complex model that
generalizes over sentences to obtain structures
such as noun-verb-noun, n-grams provide a
good balance between keeping low
dimensionality while retaining some semblance
of structure. The task, then, is to predict a
review’s F Index using its text features, while
the underlying goal is to look at which words
and phrases are weighted most heavily in the
best performing models.

IV. Model Selection & Experiments

For learning, I use only reviews with 3 or
more votes (392,917 samples) in total in order
to ensure proper sampling and calculation of F
Index. I use regression models (linear, ridge,
lasso, and elastic net) to map input to output,
because they are the easiest and most natural
models to use given the problem I defined. More
sophisticated models could be applied, such as
artificial neural networks, but they come at a cost
of model interpretability, which is important for
translating model parameters to our intuitive notion
of funniness. To evaluate model performance, I
calculate the mean squared error (MSE) of the
predicted F Index on the unseen data. Since there
are no real test sets, I evaluate the accuracy of
each model via randomized 4-fold validation,
comparing the mean MSE on the rotating
validation set for each model. The baseline of
this task is set with the bias-only model, i.e.,
predict every validation sample as the mean F
Index of the training set.

For the following report, I perform 3 main
experiments to optimize the prediction error.
First, I vary the dimensionality of the input
representation, taking the N most common
word features and assess whether accuracy
scales with dimensionality. Second, I use
several different input representations,
including unigram, bigram, a mixture of both,
as well as TF-IDF representations for all the
above. Finally, I (concurrently) investigate the
effect of different regularization schemes on

prediction accuracy, to see whether overfitting
of ordinary least squares is an issue.

V. Result

Input Dimensionality

Does prediction accuracy improve by using
more words? For the first experiment, I vary
input dimensionality with several different
models. The input consists of the top N most
frequent unigrams, where N = [50, 100, 500,
1,000, 2,000]. The baseline performance is set
using the mean model, i.e., always predicting
the mean F Index of the training set, which
achieves an MSE of 1.58. Fig. 6 summarizes
the main findings. I find that MSE decreases
monotonically as a function of dimensionality,
up to 2,000, which is the max value my
machine is able to run in a reasonable amount
of time. This is reasonable as there are 800k
unique unigrams, so the first 2,000 are likely
to be common to almost all reviews, thus
preventing overfitting. In addition, I compare
the performance of regular linear regression
with ridge regression of various regularization
parameters, and find that there is no practical
difference between these models. Again, this is
likely due to the fact that I have no crossed
into a high enough dimensionality for
overfitting, and both the input and the output
are nicely distributed with no extreme outliers.
As such, all models for the following
experiments are trained on 2,000 features.

Fig. 6 MSE for various input dimensionality

and regularization

Input Representation

Do individual words capture funniness
better than phrases? And do rare words evoke
a funnier reaction? I investigate this question
by using different representations of the input.
By keeping the number of dimensions the
same, I use the most common 2,000 unigrams,
bigrams, or an equal mixture of the two as
input. As shown in Fig.7, unigrams alone
provide the lowest MSE, followed by a

	
 5	

mixture of the top 1,000 most common
unigrams and bigrams, and bigrams alone
perform the worst. To see whether the most
common words were the contributing factor, I
use the 1,000th to 2,000th most common
unigrams and bigrams (last column) instead of
the most popular 1,000, and performance was
much worse. Therefore, combined with the
results from the previous experiment, it seems
that most information is contained in the
relatively common words, and adding more
words improves performance.

Fig. 7 MSE of various models using unigram,

bigram, and a mixture

To account for the effect of review length
(i.e., using more common words more often), I
transform the features using TF-IDF
weighting for both the unigrams and bigrams,
and perform the exact same experiment as
above. TF-IDF is calculated as shown in
lecture and various other sources, where TF is
the raw count, and IDF is the logarithm of the
ratio between total document count divided
by documents containing a particular term,
and TF-IDF is simply taken as the product of
the two. In addition to regular and ridge
regression models, I also included lasso and
elastic net models. Fig. 8 summarizes the main
results.

Fig. 8 MSE of various models using TF-IDF

representation. Linear and ridge regression traces
are stacked on the bottom, and the other three are

stacked near the top.

Prediction accuracy using TF-IDF features
are almost identical to that of using raw count
features, which is surprising. Even more
surprisingly, the most heavily weighted
features in both sets of models are extremely
similar, i.e., the same words/phrases were
weighted heavily regardless of whether raw
counts or weighted counts were used. A
possible explanation for this is that the most
discerning words and phrases have roughly the
same document frequency, and the non-
informative words occur with relatively
constant frequency in all the documents.

Regularization

Alluded to in the above experiments
already, regularization did not seem critical in
this particular situation. Note that in Fig. 8,
only linear and ridge regression performed
above baseline, whereas lasso and elastic net
failed miserably. I’m not sure why this
happened, as those 3 models were re-run with
smaller regularization (1.0) and the same
result occurred. It’s possible that the default
maximum number of steps in lasso and elastic
net optimization was reached before
converging to a satisfactory solution. It was
also interesting that ridge regression trained
much faster than linear regression, probably
due to the exact but slow matrix inversion in
the regression implementation.

VI. How To Be Funny on Yelp

Fig. 9 (final page) shows the 25 highest

weighted (positive and negative, excluding
offset) phrases from the combined
unigram+bigram linear regression model. A
few interesting observations can be made.
First, it seems that being polarizing makes for
funny reviews, particularly with a leaning
towards negative sentiment ([rude, will never,
worst, terrible, horrible] compared to
[incredible, excited]). Conversely, the most
negatively weighted phrases are relatively
neutral. Secondly, ‘my wife’ and ‘wife and’ are
both funny terms, whereas ‘wife’ by itself
seems to be the opposite (same with
‘boyfriend’ vs. ‘my boyfriend’). This is a
rather strange effect, possibly explained by the
fact that the mentioning of ‘wife’, and therefore
any bigrams including ‘wife’, makes a review not
funny, but specific mentions of the reviewer and
his wife somehow counterbalances this effect.
Finally, it appears that mentioning of a third-
person noun (‘man’, ‘girl’, ‘guy’) is associated
with a rather unfunny review. These interpretations
are, of course, correlational, and do not take into
consideration of the interaction between the terms.
And as previously mentioned, other unaccounted

	
 6	

effects, such as popularity, trustworthiness, etc.,
may still remain. However, it does provide some
insight as to when Yelp reviews are rated as
particularly funny.

Based on the first observation, I explored

whether review rating was correlated with F-Index,
which, admittedly, should have been one of the
earliest exploratory analysis. Indeed, it appears that
both 1- and 5-star reviews were more likely rated
as more funny, which corroborates with the
previous observation regarding polarized phrases
(1-star more so, see Fig. 10). When the star rating
(and star-squared) was included in the same 2,000-
dimensional input, performance improved to 1.395
with the unigram model and 1.406 with the
combined unigram-bigram model, better than all
previous models. Additionally, regressing for the
star ratings almost completely removed the
negative phrases, while keeping most of the others
top ones intact (Fig. 11).

Fig. 10 F Index as a function of star rating

VII. Conclusion

In summary, using linear models and
linguistic features, I learned that to write a
funny Yelp review, you should bring your wife
to a bad restaurant. Interestingly, previous
studies on linguistic models of humor have
reflected this observation. In Mihalcea &
Pulman (2007) [2], they used humorous and
serious news texts (the Onion vs. BBC) as
input and produced binary classification using
logistic regression, SVM, and naïve Bayes.
They found that humorous articles tend to be
overwhelmingly negatively polarized, as I have
replicated here. In addition, they found that
humorous articles were also more human-
centered, which I was not able to reproduce.

In that study, they achieve 96% classification
accuracy on news articles using SVM. An
extension of my current study would be to
categorize reviews based on their F Index into
funny vs. not funny, or funny, neutral, not
funny, and explore which linguistic features
are weighted heavily in a categorical
classification. The advantage of doing such a
task would be to ignore the magnitude of
funniness, as I have currently included with a
continuous F Index. Buscaldi & Rosso (2007)
[3] attempts a similar task using n-gram
representations of Italian quotations, classified
using Bayesian classifiers and SVM. In
general, humor classification is similar in
nature to SPAM classification, and categorical
classifiers such as Bayesian and SVM models
are commonly applied on bag of n-gram
inputs. Although categorical classification is
superior in some cases, the current dataset
presents an excellent opportunity to assess
humor along a continuous dimension, though
one may argue that how many people find it
funny does not equate to how funny it is.

The current analysis can be improved in

several ways. As mentioned above, it would be
interesting to see which features become
important when a discrete measure of
funniness is used. In addition, I specifically
ignored other features present in the Yelp
dataset in order to form a constrained and
easily interpretable task, but that does not
have to be so. Previous work on this dataset
has been focused on building recommender
systems, or assessing linguistic valence, but
not humor in particular, though complex
models that take into account of geographical
location, time, average rating of the business
under review, and use attributes can certainly
be applied in this case [1]. Finally, as I already
discussed in the opening paragraphs, more
complex models, such as recurrent neural
networks, are well suited to capture the
sequential structure of language, which could
provide further insight compared to a limited
representation using uni- and bigrams.

VII. References

[1] Yelp Dataset Challenge.
http://www.yelp.com/dataset˙challenge

[2] Mihalcea, R., Pulman, S. 2007. Characterizing
Humour: An Exploration of Features in Humourous
Texts.
https://www.cs.ox.ac.uk/files/244/mihalcea.cicling07.pdf

[3] Buscaldi, D., Rosso, P. 2007. Some Experiments in
Humour Recognition Using the Italian Wikiquote
Collection. Chapter in WILF 2007, LNAI 4578, pp. 464-
468.
http://users.dsic.upv.es/˜prosso/resources/BuscaldiRoss
o˙CLIP07.pdf

	
 7	

Fig. 9 Top 25 most associative unigrams and bigrams

Fig. 11 Top 25 most associative unigrams and bigrams, after regressing for star rating

