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Abstract: 

 

In this paper, we consider different strategies for identifying the cuisine, given its ingredients. 

This project aims to explore what combination of ingredients is helpful in identifying a cuisine 

if the recipe is not given. This has been tackled as a problem of cuisine classification. We also 

explore different classification algorithms in tandem with approaches like taking combination 

of multiple ingredients for an exhaustive analysis of the results obtained. 
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Introduction: 

 

All over the world, food recipes vary a lot even if they have the same ingredients. And different 

recipes belong to different cuisines. So if someone is only given the ingredients, estimating a 

recipe is a problem that can be solved by looking at prior data (if there is sufficient data) but 

estimating a cuisine type (which is a superset of recipes, considering broader approach and 

wide variance in the use of ingredients) is not as easy. And what makes it even more interesting 

is, there could be many more versions of the same recipe 
[1]

. However, we have followed the 

“standard cookbook” recipe approach for now, not considering all the variants at the same time. 

 

Dataset: 

 

The dataset for these recipes has been obtained from a Kaggle Competition 
[2]

 “What’s cooking?” 

hosted by Yummly. It is a popular website and application which provides recipe 

recommendations tailored to the individual's preferences, semantic recipe search and a digital 

recipe box. It contains 39774 instances of cuisine and ingredient list pairings, in which each 

cuisine has several ingredients. There are a total of 2965 distinct ingredients in the entire 

training dataset for a total of 20 cuisines. A sample from the training set typically looks like 

 

["id": 1, "cuisine": "greek", "ingredients": ["romaine lettuce", "black olives", "grape tomatoes"]] 

 

The interpretation of the above mentioned example is obvious - for some arbitrary greek recipe, 

the ingredients used were romaine lettuce, black olives and grape tomatoes. An additional test 

set of 9944 instances has been provided with the training data in which cuisine value is missing 

and the task at hand for the competition was to predict the cuisine for each example. 

 

["id": 234, "ingredients": ["Cheese", "Tomato", "Karela"]] 

 

mailto:rsverma@ucsd.edu
mailto:hiarora@eng.ucsd.edu


 

The distribution of the ingredients and cuisines is presented in the following graphs: 

 

Figure 1: Counts of most common ingredients in training set data 

 

Figure 2: Counts of all cuisines in training set data 

We observe that Italian dishes dominate the charts. Therefore, we already have the baseline in 

which we predict Italian cuisine all the time. 



 

 

Exploration of dataset and intuition: 

 

After observing the dataset, we pondered upon the mining techniques that could be applied to 

this dataset. We explored the possibilities of application of regression, dimensionality reduction 

and found that only classification could be applied to this dataset. Since the data is limited for 

estimating cuisines based only on ingredients, we used some prior knowledge about recipes. 

E.g. an instance containing flour, butter and sugar would have a high probability of having eggs 

in it. This not only presents a pattern with respect to ingredient duplets and triplets but also 

opens up a lot of possibilities for exploration despite the size limitation of the dataset. 

Therefore, bigrams and trigrams (along with unigrams) of ingredients have been taken for 

classifying the cuisines. 

While exploring the data, we could also consider a pattern amongst ingredients if we look at 

cooking techniques. E.g. for a dessert, there is almost always a requirement of sugar and flour 

for a particular cuisine. Due to limitation of time, we plan to leverage this factor in future. 

 

Preprocessing: 

 

Since the data was taken from a Kaggle Competition, not much cleaning was required. However, 

the problem of multi-class text classification required cleaning and adjustment of data 

according to our needs and we worked on a general framework for achieving that. Input and 

output of data was done through Pandas library. All the text was converted into lowercase. 

Initial approaches involved the use of NLTK library and stemming the given words but it did not 

affect the dataset much. So this part was done only for the ingredient lists present in the 

dataset and not for cuisines as it would take up more time and not be much useful as there 

were only 20 unique cuisines. 

 

There was another interesting aspect of the problem – some ingredients have more than one 

words in their designation like ‘star anise’, ‘garam masala’, ‘cinnamon powder’ etc. Our 

standard data cleaning approaches posed a problem with respect to this as star anise was 

further reduced to two ingredients namely “star” and “anise”. This problem is also evident in 

figure 1 where ingredients like “fresh” and “ground” are present within the list of top 10 

ingredients – they could have been a part of multiple ingredients like “ground pepper”, “ground 

black pepper”, “ground cumin” and others for the word “ground” & “fresh lemon juice”, “fresh 

cilantro”, “chopped fresh chives” for the word “fresh”. Since this posed a problem of multiple 

counting while providing an unfair bias to some instances and also increased chances of weird 

terminology showing up in results, we decided to deal with this by considering bigram, trigrams 

and quadgrams along with unigrams for our approaches so that our classification accuracy 

could improve. 

 

Lastly, 100 out of these cuisine-ingredients’ pairings were duplicate which meant that there 

were a total of 39674 unique examples given in the training set. 

 

 

 

 

 



 

Chasing the General Framework through experimentation: 

 

We started with the naïve approach of establishing the baseline by predicting Italian all the time 

as it was the most common cuisine. After that, we considered some more reasonable 

approaches. Since the data given was all text, some kind of processing was needed to represent 

the data in a form which could be easily handled by text classification algorithms. Moreover, 

ingredient features needed to be extracted from text as many ingredients were common among 

the cuisines. This initial approach lead us to the solution of count vectorization of ingredients, 

as count of an ingredient in a recipe can be considered as a feature in feature vector. Since an 

ingredient is either present or absent, the count vector was simply a binary vector. So, either an 

ingredient tuple for the entire vector would be “1” or “0”. 

 

Cuisine: Indian 

Ingredients ……………….. Paneer Pepper Potato Parmesan Pomegranate …………. 

Counts ……………….. 1 1 0 0 0 …………. 

 

 

Later, we tried a different; better approach of term frequency (TF) and document frequency (DF) 

computation. Considering each training data as an instance, we check whether an ingredient is 

present in that instance to get the term frequency. Since the dataset contains only the name of 

ingredient, term frequency for a given instance would again either be 0 or 1. 

 

In the case of document frequency, we calculated the frequencies for all ingredients to find the 

ones which had highest frequency among all the samples i.e. those which were most common 

amongst the ingredients.  

 

To iron out the dominating effect of a single ingredient due to its ubiquitous nature, we used 

the following formula  

 

 

Here, d represents a single document and D represents the set of all documents. 

 

Inverse document frequencies (idf) for all ingredients in each instance were calculated. E.g. 

Pepper is a very common ingredient which was used in 25528 out of 39674 instances. So after 

tfidf application, the bias towards pepper and other common ingredients would be reduced. 

Through this process, we eliminated the ingredients having document frequencies above a 

certain threshold. Doing this experimentation of threshold could lead to overfitting, so we kept 

the max document frequency to 0.35. 

 

After that, we applied stemming to ingredients and then again tried the above two approaches 

to get better results. Now we had two different vectors to play with. They could be tweaked 



 

using different parameters and therefore, it became impossible to run every iteration to 

compare the best tuned settings.  So we finalized upon the use of a pipeline for application of 

these techniques – stemming, vectorization, tfidf and then the classification algorithm with 

different attributes and parameters. Since each algorithm took time to converge, instead of 

changing the parameters every time, we inserted a range of parameters into the pipeline and 

then trained the classifier using GridSearchCV method. Grid search is a multi-core algorithm 

which gives the optimum parameters using the entire range of inputs that have been supplied 

to the algorithm. 

 

Finally, we thought of combining classifiers i.e. using ensemble algorithms (combinations of 

different classifiers) for achieving better accuracies. We applied Random Forest Classifier and 

Voting classifier with Multinomial Gaussian Bayes, Passive Aggressive Classifier and Logistic 

Classifier with soft voting criteria. The latter turned out to be computationally intensive and 

crashed mid-way. The former gave a not so good accuracy and finally was rejected. 

 

In the end, since term frequency counts could only be 1 or 0, we replaced the count 

vectorization process followed by tfidf vectorization by a singular TfIdf vectorization which gave 

a minor boost to the general framework. 

 

Algorithms Explored: 

 

Baseline Approach – This approach worked by predicted the cuisine that was the most 

common i.e. Italian. Although this was not very effective, this helped us set up the general 

framework defined above. Accuracy – 0.19268 

For all the following approaches, we used GridSearchCV function which does a 5 fold cross 

validation on the training data to select the best parameters. We tried to define the most 

appropriate parameter values by searching websites like StackExchange 
[3]

 and reading 

description of parameters on the SKLearn documentation. We have summarised the best chosen 

parameters reported by GridSearchCV in the table 1.  

Multinomial Naïve Bayes (MNB) 
[4]

 – Naive Bayes methods are a set of supervised learning 

algorithms based on applying Bayes’ theorem with the “naive” assumption of independence 

between every pair of features. It follows that ingredients in an instance were independent of 

each other. But this is a wrong assumption to make, as we know from prior knowledge that 

ingredients for a given cuisine are highly correlated. Still, this performs better than predicting 

most probable cuisine all the time. We tried MNB with both CountVectorizer and 

TFIDFVectorizer, and as expected, TFIDFVectorizer performed better. 

 

Multinomial Logistic Regression 
[5]

 - Logistic Regression is originally a binary classifier. In the 

multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the ‘multi_class’ 

option is availed. We use the lbfgs solver for optimizing our solution. 

 

Random Forest 
[6]

 - A random forest is a meta-estimator that fits a number of decision tree 

classifiers on various sub-samples of the dataset and use averaging to improve the predictive 

accuracy and control over-fitting. We used no. of estimators as 600.  

 



 

 

Perceptron 
[7]

 - Originally a binary classifier, the perceptron generalizes naturally to multiclass 

classification. Here, the input x and the output y are drawn from arbitrary sets. A feature 

representation function f(x, y) maps each possible input/output pair to a finite-dimensional real-

valued feature vector. The feature vector is multiplied by a weight vector w, and the resulting 

score is used to choose among many possible outputs. 

 

Passive Aggressive 
[8]

 – The intuition behind this classifier is-  

Passive: if correct classification, keep the model;  

Aggressive: if incorrect classification, update to adjust to this misclassified example.  

In passive, the information hidden in the example is not enough for updating; in aggressive, the 

information shows that at least this time you are wrong, a better model should modify this 

mistake. 

 

SVC 
[9]

 – Like Logistic Regression, a support vector machine constructs a hyperplane or set of 

hyperplanes in a high- or infinite-dimensional space, which can be used for classification, 

regression, or other tasks. A good separation is achieved by the hyperplane that has the largest 

distance to the nearest training-data point of any class (so-called functional margin), since in 

general the larger the margin the lower the generalization error of the classifier. We have used 

linear kernel in our analysis. 

 

Classifier Ngram-model Alpha C Warm_start 

Naive Bayes – Count Vectorizer Unigram 0.01 - - 

Naive Bayes – TF-IDF Vectorizer Bigram 0.01 - - 

Logistic Bigram - 10 - 

Random Forest Bigram - - True 

Perceptron Bigram 0.0001 - True 

Passive Aggressive Unigram - 0.1 True 

Linear SVC (linear kernel) Unigram - 0.9 - 

Table 1: Best performing parameters for classifiers using Grid Search 

 

Conclusion: 

 

From the plots below, we can infer that LinearSVC and Logistic classifiers have similar 

performance. This was expected as both of them linear in nature. They also outperform most 

other classifiers by a small margin. Random forests, which is a part of ensemble classifiers 

performs relatively worse than other classifiers. A similar trend was noted for Adaboost classifier 

in which only 46.3% accuracy was achieved but only for n_estimators parameter as 600. For 

higher values of n_estimators, the computation was too intensive to continue processing further 

(which is the reason why it has not been mentioned here). In general, for our dataset, it was 

observed that ensemble algorithms (Random Forests, Adaboost and Voting Classifier) 

performed rather poorly than was expected. We have still not been able to deduce the reason 

for the same. 

 

BEST CLASSIFIER – LinearSVC with 79.395% accuracy on the test set. 



 

 
 

 

 

 



 

Confusion Matrices for different classifiers 

 

 

 

 

 

 

 

 

 



 

Related Work: 

 

Similar work has been done by Su, Lin, Li and others 
[11]

 for automatic cuisine classification 

using ingredients. The difference between our and their dataset is, our dataset has limited 

features and was taken from Yummly.com whereas their dataset had many more features and 

was taken from Food.com. Additionally, they have also used associative classification for their 

analysis and have used SVD along with SVM for dimensionality reduction before classification. 

But the biggest difference is that their dataset contained recipe names along with ingredients 

and cuisines whereas we only had ingredients and cuisine for training which makes our task 

more challenging and interesting. 

 

Future work: 

 

If we had more time, we would leverage the prior knowledge of cooking techniques and apply it 

to various ingredients as cooking techniques help in higher correlation between cuisines. This 

would help with finding out inter-cuisine correlations along with intra-cuisine correlations for 

the same set of ingredients. E.g. If a given set of ingredients is eggs, sugar, butter, flour and 

chocolate chips, there is a high probability that the cooking technique would be baking as these 

ingredients in combination are primarily used in baking. We could use a lower dimensional 

representation in this case (lower than the number of different ingredients) and use that to 

classify the test data into cuisines. A similar possibility exists for dish type – if we already know 

that a given combination of ingredients say lemon, salt, orange, chicken, vegetable stock etc. is 

savory, we could further narrow down the cuisines to the ones which have a higher number of 

savory tuples rather than dessert or spicy. We would also try exploring the different variants of 

the same recipe with a different dataset. 

 

Lastly, we would also work towards application of boosting/ensemble algorithms for 

classification of these cuisine-ingredient tuples. 
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