Temporal Factors in Beer Ratings

CSE 255, Winter 2014
Project 1

Alexander Xydes
axydes@ucsd.edu
A53046108

ABSTRACT

Predicting a user’s rating of a product without taking how their
preferences might change over time leaves out a lot of data that
could be used to improve that prediction. Why not track that change
in preferences and change the recommendations accordingly? As
long as keeping track of that doesn’t add significantly to the model
there should be no reason not to. In this paper, I aim to do precisely
this for user preferences towards beers. For beer in particular, there
are multiple different timescales that could affect a user’s preference
and I add three different timescales into my prediction model. This
model is then compared to a baseline collaborative filtering model
based on the Pearson similarity ranking. The comparison is made
using the commonly used Root Mean-Squared Error (RMSE) and
precision@k metrics. The Temporal Factor model built in this work
is demonstrated to perform better at both metrics.

1. INTRODUCTION

Reviewing products has become an everyday occurrence for many
Americans, with most people expecting their reviews to help im-
proved their use of the product in some way. Everything from
movies, to clothes to alcohol can be reviewed and given a rating,
usually on a scale from one to five. For alcohol in particular there
are two smartphone applications, Untapped for beer and Vivino for
wine, that have become popular. While Vivino does provide wine
recommendations for its users, Untapped still does not as its focus is
more on the social aspect of drinking. As an Untapped user myself,
I would appreciate a feature that could provide recommendations
for me based on a list of beers that I provide it to choose from. The
other big beer rating sites (BeerAdvocate and RateBeer) also do not
appear to provide beer recommendations.

While beer rating sites don’t appear to provided recommendations,
most other places that allow users to rate products (like Amazon,
Netflix, Vivino) do provide them. A lot of the research that went
into recommender systems was spurred by Netflix’s competition to
beat their own recommender system, which was started in 2006 [2].
By 2009, the last year of the competition the two front runner’s were
a mashup of various teams that had started the competition. One
of those teams became an early leader by incorporating temporal

dynamics into their recommender system. It makes intuitive sense
that time should be a factor in recommender systems because user
preferences change over time. A user could start their Netflix profile
while they really like action movies, but a year later could hate
action movies and really like dramas. This type of change is hard if
not impossible to model without taking time into account.

This same type of change is also present in user preferences for
beer. In fact, there might be other forms of temporal change in beer
preferences such as seasonal favorites or even based on the time of
day.

2. DATASET

The BeerAdvocate dataset from SNAP ([|5]]) was used as the basis
for this work. Ratings are given between zero and five (inclusive)
in increments of one half. The full dataset contained too much data
to be used in a reasonable manner, so two smaller subsets were
explored. One subset at 500000 entries and one at 750000 entries
(TbL.[I). The 500000 entry subset is the one used by this paper as
it provides most of the users and beers that the larger subset had, a
lot of the same variation in ratings while being smaller and easier to
work with.

Table 1: Basic statistics about the BeerAdvocate dataset.

Statistic Full Dataset 750000 Entries 500000 Entries
reviews 1586259 750000 500000

users 33387 25567 22374

beers 66051 30009 19334
Timespan 1/98 - 1/12 1/98 - 1/12 1/98 - 1/12

Three timescales were chosen to see if the overall rating varied in
any way over the course of each timescale. The day of the week was
chosen because conceptually, it would make sense that people drink
more on the weekends than during the week (Fig. [6). However, it
proved to have less variation in the ratings than the other timescales.
The hour of the day varied much greater than the day of the week
(Fig.[7). The month of the year was chosen for a very similar reason
as the day of the week; I hypothesized that people would drink
more during some months less during others (Fig.[I). The year was
chosen as well (Fig.[2). All three timescales show variation in the
average overall rating given to beers (Fig[7] [Tl).

The month timescale (Fig.[T) shows that beer preferences can change
with the seasons. This make intuitive sense, as lighter, more refresh-
ing beers may be preferred during the summer, and darker, heavier
beers in the winter.

500000 Reviews
3.850 T T T T

3.845

3.840

3.835

3.830

3.825

3.820

Average Overall Rating

3.815

3.810

3.805 L L L L L
2 4 6 8 10 12

Month of Year

Figure 1: Average rating per month of year

500000 Reviews
4.0 T T T T

w
©

w
)

Average Overall Rating
w w
o Y

w
n

3.4
1998 2000 2002 2004 2006 2008 2010 2012
Year

Figure 2: Average rating per year

The year timescale (Fig. [2) shows how the community of beer
reviewers on BeerAdvocate has changed over the years. One can
see more variation in average overall rating for the first few years,
and then the average overall rating smooths out and starts following
a generally positive slope. The first few years could demonstrate
that the community was coming to a consensus about what scale
their ratings should be on, i.e. what constitutes a neutral rating. This
second trend could indicate a gaining of community expertise as
time goes on.

The dataset with 500000 entries was chosen for this research as it
provides the most reasonable amount of data to work with while
still containing enough for potential for results and variation in the
timescales explored.

3. PREDICTIVE TASK

The ultimate goal of this research is to have a model that can pre-
dict the top two or three beers for the current user and time from
a given list. Therefore, the model developed will have to produce
predictions of user ratings for beer. Two baselines will be used to
compare this model against: a baseline that just uses the global aver-
age from the training data (baseline 1), and a baseline collaborative
filtering algorithm (baseline 2). Performance is judged based on
Mean-Squared Error (MSE), Root Mean-Squared Error (RMSE),
R? and a comparison of precision@k rankings. The precision@k
rankings for the test set is also used to judge the validity of the
model’s predictions at the ultimate goal.

The precision@k rankings use the following definition of relevant:
label and predicted rating both above 2.5. This follows from the

goal of predicting the top k beers, as it only matters if the predicted
rating and subsequent actual rating are both high.

4. RELEVANT LITERATURE

The dataset used in this paper is described in Sec. |2} and was pro-
vided by [5]. However, it is no longer available as the website it
originated on requested that the host remove access to it. It’s been
used in the past to cross-reference review text with different rated as-
pects of the items [7]]. That paper also used it’s models to summarize
the review text which meant finding the best sentences that explain a
user’s rating. Another paper explores the effect of modeling a user’s
experience level on the effectiveness of predictive models [[6]. This
paper built two intertwined models, one for the user’s experience
level over time and one to predict the user’s ratings. Neither of these
papers explore the use of explicit temporal factors in a predictive
model, those the second one ([6]]) does approximate one temporal
factor (user preference) with it’s model of user experience.

One dataset similar to the BeerAdvocate one used in this paper that
has been studied extensively is the Netflix Prize dataset [2f]. This
dataset consists of over 100 million timestamped ratings, where the
ratings are integers between 1 and 5. This competition focused on
reducing the Mean-Squared Error of model predictions. One of the
early leaders of the competition focused on incorporating temporal
dynamics into their model [4]. That model is what this work is
based on, as it provides a straight-forward way of using temporal
variation in ratings and preferences into a latent-factor model.

Another model that explores a different way of using temporal
dynamics in the Netflix Prize rating data focuses on extending Prob-
abilistic Matrix Factorization (PMF) [9]. Not only did they extend
Probabilistic Matrix Factorization (PMF), they also used a fully
Bayesian treatment to reduce overfitting and a Markov Chain Monte
Carlo sampling method to integrate over the parameters which they
based on [].

5. FEATURES

Features based on for a global, user and item bias (i, by, b;) capture
much of the variation in user ratings and go a long way towards
accurately predicting those ratings on their own. Therefore, those
bias features are used as the basis for the temporal model developed
here. However, these basic bias features can’t capture time-changing
features that make up a realistic model of user preferences and item
popularities.

To capture time-changing features, one must incorporate some sort
of factors based on temporal features. As demonstrated above
(Sec.2), average ratings can change on many different timescales.
Most of the following features are based on the work done by Koren
in [4]].

The popularity of items (beers) definitely changes over time. It
would make sense that as a beer got older, it’s popularity would
change. It also makes sense that the season (month) of the year
might also affect the popularity of a particular beer. Therefore, two
features were added to track these possible affects: one to track the
overall popularity of a beer and one to track it’s seasonal popularity.
The overall popularity is tracked by binning the time of the review
such that there are 60 bins total for the entire dataset. Then each
beer will have a bias factor for each bin (b; (1), Eq. EP

User preferences also change slowly over time, but they can also
change much faster than beer popularity. Here three features were

added to track the different timescales that user preferences can
change at. The first tracks general user preferences as they change
over time (Eq.[6). According to [4], this fits a linear function to the
gradual change of user preferences.

The second feature tracks the seasonal preferences of users in the
same way as the feature that tracks the seasonal popularity of beers
(bumontn(r))- This is done because it’s not clear which of the two
effects is more prominent in this data, and including both in the
model gives the model the flexibility to have one stronger than the
other on a per user and per item basis.

The last feature for users tracks how their preferences change with
the hour of the day. Based on the exploratory analysis, this seems
like it might have an effect on the ratings of users (Fig.[7). This is
done the same way the monthly features are tracked, i.e. one per
hour per user (b, pour(r))-

In addition to the features mentioned above, the model includes
latent features for both users and beers. These features will capture
any significant relationship between users and beers that’s not caught
by the previous features. This is done via a vector of latent features
for each user and each item (¢;” p,,).

5.1 Preprocessing

A fair bit of preprocessing goes into getting the features outlined
above for all the entries in the dataset. First, the data downloaded
from [5] is converted from plaintext into the JSON [1]] format to
make it easier to manipulate in python. Then, that data is split into
three sets: train, validation and test sets. The validation and test sets
get 75K entries each, and the train set gets the remainder of the data.

Then upon setup of the model, the following operations are per-
formed. A list of users, and a list of items are created. For each
entry in the train set, the following items are gathered: user, item,
rating, timestamp, bin(item,timestamp), and dev,e,(timestamp) .
The same information is gathered for the validation and test sets,
except the ratings are separated and put into a list of labels for the
validation and test sets.

6. MODELS

Two models were developed for this research, the baseline collab-
orative filtering algorithm (baseline 2) and the Temporal Factors
model that is the basis of this research.

6.1 Baseline

The baseline collaborative filtering algorithm (baseline) uses user-
user similarity when the current user is in the training set, item-
item similarity when the current item is in the training set, and the
global average of the training set when neither of those cases is
true. All similarity comparisons are done using the standard Pearson
correlation similarity measure (Eq.[I).

Z (Ruﬁi _Eu) (Rvﬁi —Rv)

Sim (u,v) = =L . — W
Z (Ru,i - Ru) Z (Rv,i - RV)
iel,Nl, iel,Nl,

6.2 Temporal Factors Model
The Temporal Factors Model is built from all the features mentioned
in Sec. 5] and based on the work done by Koren in [4] on the

Netflix Prize movie dataset [2]. The predicted ratings are based on a
combination of the u feature, the time-based user and item biases,
and the user and item latent factors (Eq.[2). The length of the latent
factors vectors p, and g; is set to 20 as that is a good starting point.
A grid search over the validation set was performed on the length of
these vectors over the following values: 10,20,50, 100,200, but no
variation was observed in the resulting scores. This is most likely
caused by an error in the code, unfortunately there was no time to
look for the error.

Fuie = W +bu(t) +bi(t) +4i" pu ©)

This structure is commonly used as a basis for latent factor models
with or without the temporal features, and is also used in [4]]. Regular
latent factor models use a single feature per user and per item,
however this model bases the user and item biases on temporal
features which can include many more features per user and per
item.

The item bias (Eq.) includes one feature per item as usual, as well
as more features that are based on time. There’s one feature per
month of the year and one that captures how item popularity drifts
over time. This item popularity drift feature is based on the bin that
the time of rating is placed into (Eq.[3). The number of bins is set to
60 as that yields bin sizes of about 10 weeks for this dataset and this
bin size worked well in [4]]. This yields a value of 85 days per bin
for y. Unfortunately, there was not enough time to do a grid-search
on this hyper-parameter.

= tmin
bin(t) = —2 (3)
(1) v
bi(t) = bi+Dbj montn(r) + Pipin(r) C)

The user bias (Eq. [5) includes a single feature per user as usual,
but also includes more time-based features. One feature for each
user per month of the year, and one feature per hour of the day. It
also includes a feature that tries to capture how a user’s general
preference changes over time (Eq. @ The hyper-parameter f3 is
learned via grid-search for 30 iterations over the validation set and
setto 0.1.

bu(t) =b,+ Ocudevu(t) +bu7m0nth(t) +bu,hour(r) &)
dev, (1) :sign(t—t,,)|t—tu|ﬁ (6)

These decisions keep the model relatively compact, while still cap-
turing a lot of different possible temporal variations in the data.

With the equation for a predicted rating known, one can start learning
what the parameters involved should be. This is done via solving
Eq.[7] which optimizes the parameters and prevents over-fitting via
the regularization terms Q,, Q;, and ;.

16 500000 Beta MSE

MSE

Beta

Figure 3: Grid-search results for

argmin Z(ru,,;’t —f’u,i,,)2 +A(Q,+Qi+y) @)

u,it

2 2
Q= Zbu + Z oy + Zbu,monlh(t) + Zbu,hour(t)
u u u,t u,t
2
Q;= Zbi +Zbiﬁmonth(1) +Zbiﬁbin(z)
i it it

Q=Y llpull3 + Y llaill3
u i

The hyper-parameter A is learned via grid-search for 30 iterations
as well over the following values: 0.1, 1,10, 100, 1000, and is set to
10.

0.45

500000 Lamda MSE

0.44

0.43

MSE

0.42

0.41

0.40

0.39 . : ’
0.1 1 10 100.0 1000.0

Lambda

Figure 4: Grid-search results for A

Learning is done via the L-BFGS algorithm provided by the SciPy
[3] library and convergence takes 303 iterations to occur.

6.3 Scalability

Early on while implementing this model, I encountered some scala-
bility issues as it was taking many minutes to complete one iteration
of L-BFGS. After profiling the code in python, I realized that most
of the slowdown occurred because I was getting the index of the
user or beer in the corresponding list of users and beers every time
I needed it. Since those lists are very large, these operations take

a long time and doing it multiple times per entry caused the time
needed to balloon. I realized I could just store the indexes of each
user and item at the beginning during the setup of the training data
and then use them directly. Along similar lines, I was calculating
the results of Eq. [6] and 3] every time I needed them. This also
caused significant slowdown in my runtime, and I could also store
these values at the beginning during setup. Changing these lookups
and operations into straight references caused my runtime for one
iteration to sink to about 12 seconds.

6.4 Model Comparison

The Baseline 2 model is more commonly used in the real world,
however the Temporal Model provides some clear advantages to
that model. The Baseline 2 model is simpler to implement, which
also means that it’s easier to maintain and debug, both of which are
highly regarded qualities in the professional world. It also requires
no time to train the model and provides very nice explainabilty of its
predictions. In other words, the Baseline 2 model can tell a user that
it recommended item A because that user also like item B, C and
D. However, this model also needs more data in memory (the entire
rating matrix) than the Temporal Model. While the Temporal Model
has the same performance as the Baseline 2 model on completely
new data and has longer setup and training time it also needs less
memory to run than the Baseline 2 model. The Temporal Model
also can potentially achieve more accurate predictions because it is
taking into account temporal variations in preferences and popularity
that the Baseline 2 model cannot.

7. RESULTS

After running all the models on the test set, the Temporal Model
performed best by a large margin over the two baseline models. This
is best demonstrated in the gap in R? results between the models
(Tbl.[2). The Temporal Model bests the baseline models by at least
0.22in R%.

Table 2: Comparison of results

Baseline 1 Baseline 2 Temporal Model
Variance 0.510485 0.510485 0.510485
MSE 0.510493 0.509147 0.389147
RMSE 0.00260894 0.0026055 0.002277
R? —1.64x 1075 0.0026206 0.237691

The difference between Baseline 2 and the Temporal Model is less
drastic in the precision@k metric. This is because the Baseline 2
model does a good job of predicting which items a particular user
might want and the Temporal Model doesn’t have much room to im-
prove. The similarity between the two also validates the predictions
that the Temporal Model makes as it means that it’s performing just
as well as a simpler model. However, it does improve which you
can see when k is between 8 and 12 especially (Fig.[5). Once k gets
higher than that, the results are very relevant as most users will only
look at the first few results.

Both of the latent factors vectors (p,,q;) are completely empty (all
values are set to zero), which means that they didn’t contribute to
the model at all. This would explain why the grid-search over the
lengths of these vectors turned up zero results, and also confirms
that there is probably an error in my code. This also suggests that
temporal features can capture a lot of the variation in user ratings
that might normally go into the latent factors vectors if constructed
correctly.

— Temporal Model — Baseline 2
— Baseline 1
1.0
0.9+
X
®
c
S
°
g 0.8
o
0.7}
0.6

Figure 5: precision@k comparison

All of the other features have values that vary between —1 and 1
for the vast majority of users and items, with most of the variation
occurring between —0.2 and 0.2. The variation in values for these
features suggest that they are highly specific to the user and item.

8. CONCLUSION

Based on the results given here, adding temporal features to a latent
factor model can provide much better results than a simple similarity
based model in aggregate. It’s not clear which temporal features
added the most to the model for this beer review dataset, so exploring
that would be the next step. Given the flexibility of the model,
and the compactness when running it seems like a much better
choice than a similarity-based model for a real-world prediction and
recommendation system.

9. REFERENCES

[1] Introducing json. http://json.org, Jan. 2015.

[2] J. Bennett and S. Lanning. The netflix prize. In Proceedings of
KDD cup and workshop, volume 2007, page 35, 2007.

[3] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source
scientific tools for Python, 2001—. [Online; accessed
2015-02-23].

[4] Y. Koren. Collaborative filtering with temporal dynamics.
Commun. ACM, 53(4):89-97, Apr. 2010.

[5] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large
network dataset collection.
http://snap.stanford.edu/data, June 2014.

[6] J.J. McAuley and J. Leskovec. From amateurs to connoisseurs:
Modeling the evolution of user expertise through online
reviews. CoRR, abs/1303.4402, 2013.

[7] J.J. McAuley, J. Leskovec, and D. Jurafsky. Learning attitudes
and attributes from multi-aspect reviews. CoRR, abs/1210.3926,
2012.

[8] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix
factorization using markov chain monte carlo. In Proceedings
of the 25th International Conference on Machine Learning,
ICML °08, pages 880-887, New York, NY, USA, 2008. ACM.

[9] L. Xiong, X. Chen, T. Huang, J. G. Schneider, and J. G.
Carbonell. Temporal collaborative filtering with bayesian
probabilistic tensor factorization. In Proceedings of the SIAM
International Conference on Data Mining, SDM 2010, April 29
- May 1, 2010, Columbus, Ohio, USA, pages 211-222, 2010.

APPENDIX
A. FIGURES

3.834 ‘ 500000 ‘Rewews ‘

3.832

3.830

3.828

3.826

Average Overall Rating

3.824

3.822 - . L .
1

Day of Week
Figure 6: Average rating per day of week, Monday - Sunday

500000 Reviews
3.85 : T

Average Overall Rating

5 10 15 20 25
Hour of Day

Figure 7: Average rating per hour of day

http://json.org
http://snap.stanford.edu/data

	Introduction
	Dataset
	Predictive Task
	Relevant Literature
	Features
	Preprocessing

	Models
	Baseline
	Temporal Factors Model
	Scalability
	Model Comparison

	Results
	Conclusion
	References
	Figures

