Wine Recommendation for CellarTracker
Course Assignment of CSE255

Ruogu Liu
Department of Computer Science and Engineering
University of California, San Diego
Email: rul052@eng.ucsd.edu

Abstract—This article mainly describes the process of trying
to build a model for wine recommendation system. Based on
people’s review on various wines, it is possible to learn their
taste and predict what other kinds of wines they would prefer.
Besides, wine is such kind of product that closely related to time.
Production time, wine brand as well as reviewers’ reviewing time
are all influencing people’s choices. In this article, I will introduce
the wine review data-set I am going to use, the exploration I have
done on it, what prediction task I am going to solve, related work
done by others, what criteria my model will be based on, how to
train the model and final result and conclusions.

Keywords—wine, recommendation, CellarTracker.

I. INTRODUCTION

Recommending system is going to be a must-have part
in today’s online shopping website. Good recommendation
will stimulate the shopping desire of its users, or keep users
on the website longer. Wine recommendation is among those
difficult tasks which people’s preferences are hard to predict:
some user prefer much sourer flavor and will praise a vinegar
more than oridinary reds. CellarTracker is a website that
stores information about wines and wine collections. Created
in 2003 by Eric LeVine, CellarTracker has grown to be one of
the world’s most comprehensive wine databases. It provides
a great number of user reviews on various wines. Based on
that, this project will try to find a model which recommend
wines to old and new users.

II. DATASET DESCRIPTION AND EXPLORATION

The dataset I’'m going to use is provided by SNAP:
Stanford Network Analysis Project[1]. It consists of 2,025,995
wine reviews from CellarTracker, involving 44,268 users and
485,179 kinds of wines. This dataset spans a period over 10
years, up to October, 2012. Every piece of review data includes
9 cells of information:

name of the wine

wine unique id

variant of the wine
production year of the wine
reviewers name

reviewers id

the points given to this wine
UNIX time for this review
the review text

O 00NN A~ W

A. Data Preprocessing

First of all, the representation of this dataset needs to be
changed to a more organized way which is easy for program
to load and parse. Basically, each of those reviews can be
divided into two parts: information of wine and information
of user’s review. So the data should also follow this hierarchy.
The parsing process took about 90 seconds and generate a 898
Megabytes Json file. The review hierarchy will be:

1. wine
(1) name of the wine
(2) wine unique id
(3) variant of the wine
(4) production year of the wine
2. review
(1) reviewers name
(2) reviewers id
(3) the points given to this wine
(4) UNIX time for this review
(5) the review text

After those very first preprocessing, some basic
explorations can be done on the dataset, which are helpful
to reveal some pattern underneath those reviews and ratings,
make decision of what to predict and which features are good
to do the prediction.

B. Production year and average rating

Figure 1 depicts the relationship between the production
year of wines and their corresponding average rating points.
The x-axis is the production year of wines and the y-axis is
the average rating for certain wine. The size of each circle
shows the relative number of reviews on those wines. Several
facts can be immediately read from this figure: old wines are
higher rated than newly produced wines; users are reviewing
more new wines than old wines.

C. Length of review text and average rating

It seems that wine year is a good indicator of users’
rating points. Let’s keep digging. The idea that users’ review
text can store great amount of information on their attitude
towards certain wines leads to my next experiment. The length
of review text in characters is a very basic feature showing
reviewers’ attention. Figure 2 is the visualized result of it.

100 Wine year and Average Rating

95| - ,

QO S

average rating

85 i R

I I i i I I
1700 1750 1800 1850 1900 1950 2000 2050
wine year

Fig. 1. Relationship between wine year and average rating
100 Review text length and rating
95| .
o
£
8
u 9
o
[
>
©
85t B .
8ol

I i
1000 1500 2000
length of review text

Fig. 2. Relationship between length of review text and average rating

The figure is just like a horizontal grown tree rooted from
“no review” and expanded to 2000 or more characters. Before
the length reaches approximately 1000, the average rating
tend to be increase with the length. After that, as length of
review text grows, the rating points diverge: some tend to be
higher while others tend to be lower. The size of the circle
corresponds to the amount of reviews with such length, and
it’s trend is very clear: most people would like to give short
or no reviews while there are some diligent reviewers or
enthusiastic wine lovers who spend their time writing long
reviews to both their favored reds and disliked wines.

But the length of review text may not be available at the
time when the system do the recommendation, since users
will rate the wine first and write the review after that. So the
time we can see the review of the < user,wine > pair we
are going to predict is too late.

o5 review time and average rating

10 SO

o
o
T

average rating
co

o

T

i

75k . p . j 4

70 I i I i L i L
198000 198500 199000 199500 200000 200500 201000 201500 202000
time(year_month)

Fig. 3. Relationship between reviewing time and average rating

D. Reviewing time and average rating

Next thing that I would like to know is that whether the
reviewing time matters. My guesses are as time goes by,
people’s choice and preference would change somehow: some
people begin to become more mean while others are becoming
more generous. So reviewing time may be a good predictor
on people’s reviewing points. Figure 3 is the result including
reviews dating back to 1980s.

However, it is weird that reviewing time would be more
ancient than the website! As far as I could guess is that during
some point of the website running, it changed the way of
representing time to UNIX time. So I tried a zoomed version,
leaving out all data before the year 2003. The result is shown
in Figure 4.

91.0 review time and average rating

90.0 4

¢

89.5

average rating
O

ks

89.0

88.5

88.0

i i i
200400 200600 200800 201000 201200
time(year_month)

Fig. 4. Relationship between review time and average rating

It shows that since 2003, the number of reviews each year

2003 2004
90.0 —T—TT 90.0 —T—TT
o895 A g
=
©
© 89.0 L .
8
[
3 88.5 F .
88.0 I T S S S Lo
123452600758 9 101112 12345200768 9 101112
90.0 2 90.0 ——
peos
=
©
v 89.0
8
[
s 88.5
88.0 Lo 88.0 Lo
23456 7809101112 1 2 3 456 7 8 9101112
time(month) time(month)
2007 2008
90.0 —T—T—T T 90.0 T —T—T—T

89.51 4 89.5F .

average rating
fe2]
0
w
é
o2]
® b
w
1

average rating

. 1° ;\'MM/
s [/.\’-/\./\/_./‘ st |

88.0

A N T S S S S S
1234567 8 9101112
time(month)

A T N T S S S
1234567 8 9101112
time(month)

88.0

Fig. 5. month and average rating over eight years

increase a lot. In the beginning, people tends to give higher
point to wines, but then, maybe they become more strict
or better understand how to tell the difference among these
wines, the average rating point drops. The lowest average
rating takes place in 2008. After that, it increases back to
around 89.5 again.

Trying to find if there is some information hiding in finer-
grain time span, the relationship between month and average
rating should be revealed. Figure 5 shows the trends of average
rating along with months in eight years from 2003 to 2010.

In these eight years, average rating seems to have no
obvious connections with month, Figure 6 shows this result
more clearly. So month will not be considered to be an
important in my predicting model.

E. Expertise

As users review more wines, their knowledge about wines
are likely to accumulate and they will become more expert[2].

90.0

2003-2012

average rating

87.0 ; i ; i i i ; ; ; ;
1 2 3 4 5 6 7 8 9 10 11 12
time(month)

Fig. 6. month and average rating overall

Their experience level seems to be another good factor which
strongly influence their preference. Here I assume that users’
experience is closely related to the number of wines they have
reviewed. After some quick calculation, the average rating
times for each user is 45.8. So let 45 as a classifier for expert
and novice. Then calculate the difference of their preference
to find whether there are some patterns.

difference between expert and novice

[Onovices rate higher | experts rate higher[]

difference between expert and novice ratings

—40

i i i i i i
65 70 75 80 85 90 95 100
average rating

Fig. 7. expert and novice rating

Figure 7 is depicted based on the reviews in the year 2012
since it is the latest data and we will be less influenced by
the problem such as expert made a lot of mis-rating during
his novice time. Figure 7 shows the result of my idea. In
this figure, users who has reviewed more than 98 wines are
treated as experts while users who has less than 3 reviews
are treated as novice. The x-axis represents the average rating
for certain wines, and the y-axis represents the difference
between the average rating from expert group and average
rating from novice group. It turns out that expert and novice

can reach an agreement for very good wines, but for ordinary
wines, they have great different opinions. Besides, experts
can are more mild to ordinary wines while novices seems to
be relative mean to give high score to common reds.

III. PREDICTION TASK

After these exploration, I had made my prediction task
clear: provided with the user’s id and wine id, predict whether
user would like this wine or not. Here several points should
be defined in advance: a successful recommendation will
recommend a wine which this user would give more than his
average rating point for other wines in the past. So it will be
a miss if we have recommend a wine which user is likely to
give low rating point. The model should be like this:

rec(user, wine) = ratingpredict

By doing that, we can get a rating point rec(yser,wine) for user
on such wine. To evaluate the performance, the mean square
error (M SE) needs to be calculated on our test dataset 7":

MSE(T) = ﬁ >

T(user,wine) €T

2
(Tec(user,wine) — T(user,wine))

Test dataset is all the reviews made in year 2011 and 2012,
training data is all the reviews made between year 2003 and
2011.

The baseline for this task is to calculate the average rating
among all the history reviews and use it as predicted rating
for this user. This naive approach just ignore the identity or
any other features of user, just use the favor of the whole
community to judge whether individual would love to praise
certain wines. The M SE of baseline approach is 18.953.

IV. RELATED LITERATURE

The dataset I am using comes from SNAP[1] and has been
used for the paper[2]. That paper modified latent factor model
by introducing user experience as a function of time. It based
on the assumption that “by individually learning for each user
the rate at which their experience progresses, we are about to
account for both types of behavior”. Basically, the model has
been changed to:

rec(u,i) = rece, ,(u,1)
= a(emi) + Bu(eul) + Bi<eu,i)
+ < Yuleu), vi(€us) >

And the result of this model is pretty good: it shows
in the paper that in both users’ most recent reviews and
randomly sampled reviews, its M .SE are all reduced greatly.
Besides, the paper also shows some interesting behavior
for users from various level of expertise. It reveals that
beginners and intermediate users are hard to predict their
behavior while experts tend to agree with each other and
easier to predict. But “almost experts” are surprisingly
least predictable. And its explanation is that users do not
become experts smoothly, but evolute stage by stage. Here,
its performance is treated as a goal for my model to achieve,

even though it is extremely hard to beat their performance, it
still let me know how much we could do to improve my model.

V. RELEVANT FEATURES FOR PREDICTION TASK

The features I am going to use to predict user rating on
certain wine is wine’s production year and user’s experience.
The first feature, wine production year is easy to see why it
is relevant. According to the exploration part of section II,
wine’s production year is strongly influenced its average rating
(Figure 1). More specifically speaking, the older its year, the
higher people’s rating on it. So there exist some negative
correlations between production year and its reputation.
Besides, the older its year, the less reviews about it. This may
result from that the older the year, the higher its price would
be. It verified that negative correlations in another way.

The second feature I am going to use is experience. It
is a feature closely related to the review history before the
time of prediction task. There are two pieces of data store
the information of experience: the number of reviews made
by the user in the history and the total period of time since
this user joined community. As shown in Figure 7, people
who make a lot of reviews and people who review little have
different behaviors over ordinary wines, but they tend to agree
that some wines are really “the best”. And it is reasonable
that user who stay in the community are more experienced on
wine reviewing, and that can be approximately revealed by
the time span between their first and last reviewing time. It
is very hard for a small project like this to model experience
better than the paper[2] I mention before, but I will try two
models to reveal that these two pieces of data can make some
difference.

VI. MODEL DESCRIPTION

There are several models I have tried in this project. The
first model is a very intuitive linear model:

rec(u, i) = wotwi X WineY ear(i)+wy x NumO f Review(u)

Here w is user variable (user ID) and ¢ means wine variable
(wine ID). Here I did not consider the difference of each
user’s learning rate. So all users are treated with the same
learning rate, which means after writing certain number of
reviews, a user will reach to the expertise level with others
who also finish this workload.

There are times when a new user or a new wine come to the
model when testing. In that case, we can not say anything about
it, so if only user is new, this model will provide the average
rating of this wine as predication, otherwise, this model will
give the average rating of all wines as predication. So the
model will become:

ar(i) = average rating of wine i
AR = average rating of all wines

ar(i) ifu ¢ History

AR ifu and i ¢ History

wo + w1 WineYear(i)+

waNumO f Review(u)

rec(u,i) =

otherwise

The testing result is M.SE = 16.6634. It improves baseline
by 11.4%. But it’s still large. The problem might lie in the
ignorance of the time span of users first and last review.
If a user did spend some time in the community while not
reviewing too much wines (maybe lazy), he should also gain
some experience.

My second model aims to make some improvement. This
time, it will take the time span between user’s first review and
last review. So the predicting model is:

ar(i) = average rating of wine i

AR = average rating of all wines
t = last day of review — firstdayofreview
ar(1) ifu ¢ History
AR ifu and i ¢ History
wo + w1 X WineYear(i)+
wz X t X NumO f Review(u)

This model improves the MSE to 16.6630. It’s not a
big improvement though but it shows some light that both
time span and number of reivew is necessary to be considered.

rec(u,i) =

otherwise

My third model is using k Nearest Neighbours. Each point
is a vector of three values: wine’s production year, number
of reviews, time span. By doing that, this model will treat all
the training data as a model. Every test data is going to find
some history data points which are really similar to it, then it
can take the median of all those points to be its predicting
data. Here I also split a validation set from training data to
tune k. The M SFE of it is around 2000.

I also tried using Latent Factor Model. Even though it
ignores temporal information, it would also get excellent
performance in practice[3]. The predicting function is:

rec(u,i) = o+ By, + B;

Here u refers to user and ¢ refers to wine. So the problem will
become try to solve:

arg rglél ;(a + Bu+ Bi — Ruyi)® + /\[; i+ Zﬁ?]

And) is set to 1.0. Alternate updating method is used to update
« and S, until converge. The M SE of this model beats all the
former models with 13.810, nearly 18 percent improvement.

VII. RESULT AND CONCLUSION

The result of all three models as well as baseline is show
below:

First model is trying to build only one straight line for all
the data points, which is nearly impossible to do the work
well. Since this dataset seems hard to be linear split only
based on those two values. It may not be linear at all. Just as
Figure 7, though there is some relationship between expertise
and rating points, but it is not linear.

Second model has the same problem, since its linear, too.
But k-NN model’s failure bring me to think that training
data may include too much historical mis-rating of users and
could not represent the current appetite of certain user. So I
made a small modification to this model by shrinking training
dataset to contain only reviews from year 2011 and use it
directly to predict data points in year 2012. The M SE drops
sharply down to 984.32. So I might assume if there is a really
state-of-art dataset to feed this model, its performance would
likely to be much better.

Latent model should be a good choice, and it turned out
to be. It improves the performance very much while M SFE is
still large. I might guess the problem lies inside the training
set and testing set. My testing set is all data of the year 2012,
while training data is before that. So it has relative large bias
on temporal variable. Maybe random sampling will be a better
choice.

In conclusion, this dataset is very special since it lacks
ordinary wine features as well as user features. All it has is the
relation between users and wines, as well as time stamp. So all
the three models I built can hardly meet requirements of real
recommendation system. But these trial and failure provides
good experience to other people and help them reveal the good
way to dealing with a dataset like this and avoid pitfalls.

ACKNOWLEDGMENT

The author would like to thank Mark Qiao, who is also
struggling through some messy datasets while helping me with
some understanding of concepts for this project.

REFERENCES

[1] Jure Leskovec and Andrej Krevl, SNAP Datasets: Stanford Large Net-
work Dataset Collection. http://snap.stanford.edu/data, Jun, 2014

[2] J. McAuley and J. Leskovec, From amateurs to connoisseurs: modeling
the evolution of user expertise through online reviews. WWW, 2013.

[3] Y.Koren, R.Bell, and C. Volinsky, Matrix factorization techniques for
Recommender systems. Computer, 2009

baseline | linear model 1 | linear model 2 | k-nn

Latent factor

MSE | 18.953 16.6634 16.6630

2420.2264

13.810

The result is not very encouraging. Especially k-NN
model which I expected it to perfor well. In this section, I
will analysis each model in detailed way.

